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Proposal Summary 

 
The proposed activity here addresses the Health and Air Quality Application Area. The project 
anticipates improving the accuracy of the Decision Support Tools (DSTs) used by health and air 
quality managers to meet the health effect standards set by the Clean Air Act (CAA). The CAA 
is the comprehensive federal law that authorizes EPA to establish National Ambient Air Quality 
Standards (NAAQS) to protect public health and public welfare. The states are responsible to 
meet these standards through the use of the DST to develop and evaluate emissions control 
strategies under State Implementation Plan (SIP). SIPs are at the nexus of health effects and 
economics. Since the economic costs of such decisions can amount to billions of dollars 
nationally, the accuracy of the DST is critical to determining efficient, cost effective strategies 
for attaining NAAQS. 

For this project, the target Decision Support Tool is the Weather Research and Forecasting 
(WRF) and the Community Multiscale Air Quality (CMAQ) modeling systems.  CMAQ is an 
EPA-developed photochemical modeling system typical of the modeling systems now used by 
many regulatory agencies.  The modeling system is also being used for operational air quality 
forecasting by NOAA. The objective of the proposed project is to utilize Earth observations and 
NASA science in the DST to improve key physical factors such as soil moisture and heat 
capacity, boundary layer development, and clouds that are critical in air quality photochemical 
simulations. A critical area in the DSS that will be targeted for improvement is in improving 
model location and timing of clouds. Clouds have a profound role in photolysis activity, 
boundary-layer development and deep vertical mixing of pollutants and precursors. Also, a new 
technique for near-realtime estimation of lightning generated NOx (LNOx) will be tested in the 
NASA Lightning NO-production Model (LNOM). The technique introduces a methodology for 
directly estimating LNOx, on a flash-by-flash basis, from the observed cloud-top lightning 
optical energy detected from satellite lightning imagers. This will be a new capability made 
possible by geostationary observations of lightning events. 

The satellite products include surface skin temperature, insolation, and albedo from Moderate 
Resolution Imaging Spectroradiometer (MODIS) on-board AQUA and TERRA satellites and 
Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard Suomi National Polar-
orbiting Partnership (Suomi-NPP) satellite. In addition, we will be using Geostationary 
Operational Environmental Satellite (GOES) observations under NASA legacy science to 
complement polar orbiting observations obtained from VIIRS and MODIS. The project will take 
advantage of GOES-16 observations that offer a broad suite of observations relevant to this 
project at much higher temporal and spatial resolution. This will require retooling several NASA 
science products that are critical for our partner organizations. The applied partners in this 
project are EPA’s Atmospheric Modeling Division (AMD) at the National Environmental 
Research Laboratory (NERL), the Lake Michigan Air Directors Consortium (LADCO), the 
California Air Resources Board (CARB), the Texas Commission on Environmental Quality 
(TCEQ), and the Georgia Environmental Protection Division (GAEPD). Note that this includes 
some of the largest most active state air pollution agencies in the country. 
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1 Decision-making Activity 
1.1 Description of Decision Making Framework: 
The Nation’s health related air-pollution control program is defined by the Clean Air Act that 
requires the attainment of National Ambient Air Quality Standards (NAAQS) that are set by the 
EPA. NAAQS are based on the pollutant’s impact on human health and provide public health 
protection, including protecting the health of "sensitive" populations such as asthmatics, 
children, and the elderly. The standards are based on epidemiological and exposure studies 
which attempt to find minimum levels of pollutants which can be demonstrably connected to 
adverse health effects (morbidity or mortality). Air quality measurements are used to find those 
areas that are not attaining these health-based standards. Once an area is found to be in non-
attainment for a particular pollutant, then a process is initiated in which the states’ regulatory 
agencies must devise a plan for attaining the standards. This plan, called a State Implementation 
Plan (SIP), defines specific emission-reduction strategies for meeting the NAAQS and is the 
main vehicle for protecting human health and welfare. 

The decisions made for the emissions reduction strategies under SIP are costly. Across the 
Nation, SIPs involve hundreds of billions of dollars in emission controls. For example, it is 
estimated that the cost of meeting the fine particle (PM2.5) NAAQS will amount to $38 billion 
per year. Thus, it is imperative for the air quality managers to have confidence in the tools used 
to define emission control strategies. This is where NASA data, tools, and science can impact 
multi-billion dollar health decisions. 

The Decision Support Tool (DST) used during the development of SIPs is an air quality 
modeling system comprising an atmospheric dynamics (meteorology) model coupled with an 
atmospheric chemistry (air quality) model. The retrospective modeling conducted in support of 
SIPs has to demonstrate that industry-specific emission reductions will result in future 
compliance with the NAAQS. Inaccurate characterization of the atmosphere by these models can 
bias the result and lead to development of ineffective emission control strategies. Since the 
cumulative costs of implementing these controls can amount to billions of dollars, reducing the 
sources of uncertainty and increasing the confidence in the model results is of outmost 
importance to the regulatory agencies. 

The retrospective nature of the SIP process provides a greater window for the direct use of 
satellite. In modeling the SIP design period, satellite data can be assimilated throughout the 
modeling period. This allows using a combination of observations and model to dynamically fill 
the atmosphere on small space and time scales during the design period to better recreate a test 
atmosphere over which emissions-reduction scenarios can be assessed.  

The DST most commonly used in SIP applications, and in particular by our partner 
organizations, employs the Weather Research and Forecasting (WRF) model to recreate the 
physical atmosphere and the Community Multiscale Air Quality (CMAQ) or the Comprehensive 
Air Quality Model with Extensions (CAMx) as the air quality model.  Both the emission 
estimates of primary chemical constituents and atmospheric chemistry are highly impacted by 
physical factors such as temperature, moisture, winds, mixing heights, and clouds.  In the present 
work we will concentrate on improving the performance of WRF model which is being used by 
both CMAQ and CAMx and is employed by our applied partners. Furthermore, the current 
project will provide a satellite-based estimate of lightning generated NOx (LNOx) that is a key 
component of natural NOx emissions and is of interest to our partner organizations. 
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1.2 Partners/End-users and Their Responsibilities:  
We will be partnering with the EPA’s Atmospheric Modeling Division (AMD) at the National 
Environmental Research Laboratory (NERL) in Research Triangle Park, NC, the Lake Michigan 
Air Directors Consortium (LADCO), California Air Resources Board (CARB), the Texas 
Commission on Environmental Quality (TCEQ), and the Georgia Department of Natural 
Resources (GA-EPD).  As the original designer and developer of the WRF/CMAQ modeling 
system, NERL/AMD continues to update the system by including new science and innovations 
in the DST.  UAH, being among the original developers of CMAQ, continues to have a close 
collaboration with EPA.  This will ensure the dissemination of the tools and technology 
developed under this project to the broader user community and the realization of the health and 
societal benefits expected from this project. Our other partners from Midwestern States, 
California, Texas, and Georgia, represent some of the most influential and proactive states with 
respect to air quality and public health issues (please see the letters in section 8).   

LADCO: LADCO is an organization established by the member States of Illinois, Indiana, 
Michigan, Wisconsin, Ohio, and Minnesota to provide the air quality modeling platform that is 
used by its member states to demonstrate NAAQS attainment. This is to ensure that the member 
states protect human health and the environment by attaining and maintaining health-based air-
quality standards. LADCO’s interest in the proposed project stems from the results from recent 
field campaigns (e.g., LMOS-2017) and modeling studies that indicate the critical impact of 
land-surface temperature and lake temperature on the transport of precursors and the consequent 
chemical regime responsible for the elevated ozone levels. 

CARB: CARB is a part of the California Environmental Protection Agency and reports directly 
to the Governor's Office in the Executive Branch of California State Government. CARB’s 
mission is to promote and protect public health, welfare and ecological resources through the 
effective and efficient reduction of air pollutants while recognizing and considering the effects 
on the economy of the state.  The project proposed here is of particular interest to CARB as it 
addresses some of the pressing issues CARB is facing in simulating boundary layer growth and 
transport over complex terrain in California.  

TCEQ: Over the past decade the TCEQ has actively participated in many field campaigns and 
has been funding follow-on studies to advance the science and incorporate the results in Texas 
SIP activities. Currently, TCEQ (through AQRP) is funding a research project that uses satellite 
skin temperature to better specify physical parameters associated with land use classes. 
Therefore, the current proposal not only leverages the AQRP activity, it also has direct impact on 
TCEQ’s decision making activity as it addresses a priority area for TCEQ. 

GEPD: The GEPD was one of the initiators of the Southern Oxidant Study, a ten year study of 
the hydrocarbon rich southern atmosphere and one of the largest air quality research programs 
carried out in the country. Georgia’s concerns are biogenic HC and natural NO emissions which 
are highly dependent on temperature and moisture. Photolysis fields due to the patterns of 
convective cloudiness that is part of the summertime climate and cloudiness associated with 
stationary fronts that have often been part of the SIP design periods in the Southeast are also of 
concern to Georgia (as well as Texas). In addition, these summertime convective activities also 
are responsible for a considerable burden of LNOx in the Southeast. 

While the results from this project have transferability to the nationwide SIP activities and have a 
broader impact, certain parts of the project are more appealing to certain geographical locations. 



Use of Remote Sensing Data to Improve Air Quality Decision Support Systems Used to Protect 
Public Health Page 3 

 

However, since the results from this project tackle some of the more pressing modeling issues 
and has a broad implication, our partners from California to Ohio will benefit from the outcome. 

1.3 Baseline Performance and Emissions Control Scenarios:  
The SIP modeling process is based on a set of sensitivity simulations to test the impact of an 
industry-specific emissions control.  Thus, the regulatory agencies strive to have the best model 
performance (closest possible to the real atmosphere) as their control simulation.  The baseline 
performance for this proposal is the control simulations from our partner agencies.  Therefore, 
our metric for success is to demonstrate that the use of NASA data and science will enable the 
end-user to out-perform their best model performance.  This means demonstrating improvements 
over the control simulation (without satellite data), showing a reduction in uncertainties, and 
therefore increased confidence in DST and the decision making process. 

2 Earth Observations 
The satellite products include surface skin temperature, insolation, and albedo from Moderate 
Resolution Imaging Spectroradiometer (MODIS) on-board AQUA and TERRA satellites and 
Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard Suomi National Polar-
orbiting Partnership (Suomi-NPP) satellite. In addition, we will be using Geostationary 
Operational Environmental Satellite (GOES) observations under NASA legacy science to 
complement polar orbiting observations obtained from VIIRS and MODIS. The project will take 
advantage of GOES-16 observations that offer a broad suite of observations relevant to this 
project at much higher temporal and spatial resolution. This will require retooling several NASA 
science products that are critical for our partner organizations. 

The data products and satellite assimilation techniques to be used and enhanced in this project 
have been largely developed with funding from NASA’s Earth Science Division (ESD) over the 
past few decades. Some of the original geostationary work was funded in the mid 80s under a 
NASA research program related to the use of satellite data for understanding the initiation and 
evolution of moist convection. A second generation of assimilation and satellite products was 
developed in the early 90s under process related studies of surface energy budgets for use in 
regional and global climate models. In the late 90s, a NASA/NOAA U.S. Weather Research 
Project took these process and case study approaches into the operational forecasting arena. The 
assimilation techniques were incorporated into the MM5 modeling system and techniques for 
processing satellite data products were made efficient enough for use in operational 
environments. These activities took place under RTOP, USWRP, and GEWEX programs. 

This long-term NASA support led to a successful collaboration with EPA through which UAH 
scientists used satellite derived products for assimilation of insolation and skin temperature data 
into the surface energy budget of the meteorological model and assimilation of photolysis fields 
into the photochemical model in the CMAQ.  More recent NASA support resulted in the 
development of satellite-based photosynthetically active radiation (PAR) that has proven 
valuable for several state regulatory agencies in their SIP modeling activities.  
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3 Technical/Scientific/Management Approach 
3.1 Relevance to the Priority Topic of Health and Air Quality Application Area 
The main goal of this project to use Earth observing data to improve the decision support tool 
(DST) that is being used by the states’ regulatory agencies to implement air quality standards, 
policy, and regulations for human welfare. The targeted DST is the Weather Research and 
Forecasting (WRF) and the Community Multiscale Air Quality (CMAQ) modeling systems. The 
project will improve the fidelity of WRF/CMAQ predictions through the utilization of satellite 
data and will provide the techniques, tools, and the data available for routine use by the air 
quality community. Our research group at UAH along with its NASA, USEPA, and State 
partners has been a leader in developing techniques that employ satellite data to improve the 
performance of regional-scale meteorological and chemical transport models, especially within 
the atmospheric boundary layer (McNider et al., 94, 95, 98, 2005, 2011; Pour-Biazar et al., 2007, 
2010, 2011, 2012; Macharo et al., 2011; White et al., 2017). We are proposing here to implement 
these satellite data assimilation techniques within the framework of the WRF/CMAQ air quality 
modeling system and make them available to the air quality community, facilitating the 
utilization of NASA satellite data and science that has proven assenting in our previous research. 

3.2 Application of the Erath Observations to the Decision Making Activity 
Our objective is to demonstrate the use of NASA satellite data, science, and models for improved 
1) cloud simulation, 2) characterization of surface energy budget, 3) boundary layer 
development, and 4) lightning-generated nitrogen oxides (NOx) emission estimates and to 
integrate them in the DST for the user community. This involves the use of IR surface 
temperature, and VIS derived insolation products from Visible Infrared Imaging Radiometer 
Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite and 
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard TERRA and AQUA 
satellites. The project heavily relies on geostationary observations of clouds, surface temperature, 
insolation, cloud albedo, surface albedo, and lightning information from the Advanced Baseline 
Imager (ABI) and the Geostationary Lightning Mapper (GLM) aboard the new generation of 
Geostationary Operational Environmental Satellite-R series). The first in these series, GOES-16 
as GOES-east, offers geostationary observations at much higher spatial and temporal resolution. 
The proposed activity here requires retooling our data processing software, as well as techniques 
used for data assimilation in DST, to work with the new satellite data. 

In the following the rationale for each of these objectives along with the results from our 
previous research will be presented.  We will also discuss the relevance of the proposed work to 
the issues that our partner organizations are facing. The results from this project will help our 
partners with respect to their regulatory decision making that impacts air quality and public 
health.  In sections 3.3 and 3.4 the techniques for satellite data assimilation within WRF, 
satellite-based LNOx emissions estimates, and modeling efforts will be presented.  The use of 
satellite skin temperature as a model performance metric also will be discussed.  Section 3.5 
presents an estimate of our current application readiness level (ARL) and our expectation at the 
end of the project. Anticipated challenges and risks will be discussed in section 3.6. 

3.2.1 Role of the Physical Atmosphere in the Decision Making Activity 
Atmospheric chemical composition is significantly affected by meteorology. In fact air quality 
often shows better correlation with physical parameters than with chemical measures such as 
anthropogenic emission variations or initial chemical conditions. For example in almost every 
geographic setting, ozone levels are strongly correlated with temperature (Sillman et al., 1995). 



Use of Remote Sensing Data to Improve Air Quality Decision Support Systems Used to Protect 
Public Health Page 5 

 

Clouds have profound impact on photolysis fields, which are first order drivers of 
photochemistry. Temperature greatly impacts evaporative anthropogenic emissions and biogenic 
emissions. Temperature also directly affects chemical reaction rate and thermal decomposition. 
Wind speed and wind direction have strong impact on source/receptor relationships and air 
quality background. Mixing heights inversely modulate concentrations of pollutants and 
precursors. 

These physical parameters also play a major role in the efficacy of control strategies. For 
example, if the physical model underestimates the mixing heights, the impact of emission 
reductions will be exaggerated. If temperatures are too hot in the model, it will increase thermal 
decomposition of organic nitrates, leading to steeper ozone-NOy curves and overstatement in 
NOx emission reduction strategies. Temperatures strongly impact biogenic emissions which can 
change the ratio of hydrocarbons to NOx, impacting efficiencies of hydrocarbon or NOx control 
strategies. Wind speed is the main factor diluting emissions of precursors. If models 
underestimate wind fields then sensitivity to emission reductions will be overstated. 

Surface moisture impacts the partitioning of incoming solar energy between sensible and latent 
heat fluxes, directly impacting temperatures. Since the mixing heights are controlled both by 
land surface fluxes and synoptic or mesoscale subsidence, improvement in surface fluxes can 
also improve mixing height. Soil moisture also controls stomatal uptake of ozone which is one of 
the main losses of ozone in the boundary layer (Pleim et al. 2001). Thus, moisture may be one of 
the key factors in the viability of long-range transport of ozone impacting background levels. 

One of the deficiencies of atmospheric models is their poor prediction of clouds. Clouds 
significantly impact photolysis fields and also alter the surface energy budget by reducing the 
incoming radiation. A modeling simulation that has photolysis rates too high will often show 
emission reductions to be more effective than in reality. In addition, clouds impact 
heterogeneous chemistry and aerosol recycling. Clouds also greatly impact biogenic hydrocarbon 
emissions (since the emissions are most sensitive to light). 

Convective clouds generate lightning which in turn causes NO production (LNOx). LNOx is a 
significant source of NOx in the troposphere. With the ozone standards being reduced, the 
background ozone concentrations play an important role in devising SIP regulations. Thus, an 
accurate representation of this emission source in air quality models is crucial. 

Use of satellite observations in the physical model can improve these key parameters. Satellite 
data have the potential to improve temperature predictions (Carlson 1986, Wetzel et al. 1984, 
Diak 1990, McNider et al. 1994, McNider et al. 2005). Satellites also provide the best 
observational platform for defining the formation and location of clouds. With geostationary 
observations of lightning, now available from GOES-16 Geostationary Lightning Mapper 
(GLM), it is possible to have satellite-based estimates of LNOx.  

In the past, our research group has pioneered generating satellite data products and providing 
tools to assimilate satellite data in in meteorological and photochemical models to improve 
transboundary transport of air pollutants (Pour-Biazar et al., 2010, 2011), biogenic emission 
estimates (Zhang et al., 2017), cloud assimilation (White et al., 2017; Pour-Biazar et al., 2011, 
2012), and photolysis rates and insolation specification (Pour-Biazar et al., 2007, 2011, 2012). 
While these techniques, the focus of previous NASA Applied Science (AS) projects, have 
improved the performance of models for SIP activity, there are still issues with the modeling 
system and data that need to be addressed. These issues include 1) the inadequate performance of 
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cloud assimilation in fine-scale simulations, and 2) disconnect between the model surface 
moisture, temperature, and fluxes and the attributes that were impacted by the cloud assimilation. 
We are proposing to address these issues and also provide a new technique for estimating LNOx 
based on satellite observations. These will be discussed further in the following. 

The introduction of GOES-R series of geostationary satellites will provide geostationary 
observations at a much higher spatial and temporal scale. GOES-16 will replace GOES-13 as 
GOES-East, starting January 2018. Due to drastic differences in data stream, format, and 
resolution of the new data, many of the processing tools for our data products will cease to 
operate and need modifications. Many of our partner organizations (as indicated in their letter of 
support) rely on the availability of our satellite data products. This leads to a sense of urgency for 
retooling our processing software. Additionally, our assimilation techniques will be modified to 
take advantage of data with higher spatial and temporal resolution to address finer scale 
modeling issues. 

3.2.2 Cloud Assimilation 
Clouds play a critical role in the production and destruction of pollutants and the accurate 
prediction of clouds in space and time is essential for air quality modeling simulations. Clouds 
alter the photolysis rates (Pour-Biazar et al., 2007); affect the biogenic hydrocarbon emissions 
(Kesselmeier and Staudt 1999; Zhang et al., 2017); and impact the heterogeneous chemistry 
(Blando and Turpin (2000); Lim et al. 2010; Ervens et al. 2011).  Clouds also modify the amount 
of vertical mixing; transport boundary layer air into the free troposphere, providing an important 
source of hydrogen oxide radicals (Tie 2003); alter the development of the boundary layer by 
suppressing the surface heat flux (Stull 1988); and in the case of precipitating clouds, present a 
significant removal mechanism for pollutants through wet deposition (Seaman 2000).  
Additionally, convective clouds, which generate lightning, provide a significant source of 
nitrogen oxides (NOx) into the free troposphere (Tie 2003). Pour-Biazar et al., 2007, showed that 
model errors in cloud simulation were responsible for large under- and over-predictions of 
ozone. 

Previous Work: Despite many advances in microphysical and PBL parameterizations within 
weather forecasting models, creating clouds at the right time and location remains a challenge. 
This is especially the case when synoptic-scale forcing is weak (e.g. Stensrud and Fritsch 1994) 
such as often is the case during air pollution episodes. Because of the poor performance by the 
models, UAH has been pursuing data assimilation approaches to improve cloud simulation in the 
air quality models. Under a ROSES solicitation, UAH developed techniques to account for 
physical impact of clouds based on satellite observations, circumventing the problems associated 
with poorly predicted cloud fields. Model derived insolation, which plays major role in radiative 
fluxes and subsequent boundary layer evolution and is highly modulated by clouds, was replaced 
by satellite derived insolation (Gautier et al. 1980, Diak and Gautier 1983, and McNider et al. 
1994). 

However, since attenuation by cloud water can reduce photochemical rates beneath clouds and 
can accentuate production above clouds due to reflection (Madronich et al. 1987), further 
refinements were needed. Later, under another ROSES solicitation, satellite derived cloud 
transmittance and cloud top were used in place of model values in CMAQ (Pour-Biazar et al. 
2007). Both of these direct replacements of the physical attributes of clouds made large 
differences in boundary layer characteristics and photochemistry in baseline tests (Pour-Biazar et 
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al. 2007).  While these activities led to improvements in model performance, it produced a 
physical inconsistency in the model system. Insolation and photolysis fields did not agree with 
the model clouds. Thus, places where the photolysis was suppressed based on satellite observed 
clouds but the model was clear, the model did not have the appropriate mixing or venting. There 
was also no attempt at changing the liquid water content in the model to be consistent with 
observations. Thus, important chemical attributes such as moist chemistry for sulfur or organic 
aerosols were not handled properly. 

To address this shortcoming, UAH pursued a separate activity that was initially funded under a 
NASA GEWEX project to improve the initialization of clouds for weather forecasting. While 
one might think that satellite estimates of liquid water would make the insertion of clouds 
relatively easy, this is not the case. Many research efforts have focused on assimilation of 
observations to improve model cloud fields (Chen et al. 2015; Spero et al. 2014; Jones et al. 
2014, 2013, 1998; Zhang et al. 2013; van der Veen 2013; Otkin 2010; Yucel et al. 2003).  
However, the improvement in the model forecast, in time, has been limited.  While these studies 
demonstrated limited improvements in model performance, they all concluded that the 
improvement was short lived.   

The Need for Creating an Environment Conducive to Cloud Formation/Dissipation: Yucel et 
al. (2003) assimilated GOES visible and infrared data, but also found that enhancements to the 
forecast lasted a maximum of 3 hours.  From this study, it was also concluded that the short term 
impact of cloud assimilation in NWP models is caused by the inconsistency between the model 
dynamic field and the thermodynamic field.  The problem is that the production and 
sustainability of cloud water is dependent on the water vapor and temperature environment that 
provides the needed relative humidity. Therefore, the added cloud water in the model, where 
model has a dry environment, cannot be sustained. Conversely, when liquid water is removed 
from the model where observations show no clouds, the model will continue to produce new 
water.  Direct insertion of liquid water can even deteriorate model performance. As an example, 
attempting to insert clouds (based on observation) at a position where the model is clear means 
that the cloud is likely being inserted where the model has subsidence as opposed to lifting. 
Inserting water where the model has subsidence will cause evaporation and further subsidence, 
exactly the opposite of supporting the observed clouds. 

Improving cloud forecasts, including non-precipitating clouds which are important for air 
quality, becomes even more challenging due to the reduction in the amount of available 
observations.  Standard weather service observations are not dense enough to be used for cloud 
specification, and the NWS WSR-88D radar network is not designed to be sensitive enough to 
retrieve cloud droplet information.  Therefore, satellites remain the only platform which provides 
sufficient temporal and spatial resolution to quantify cloud fields.  The GOES-16 Advanced 
Baseline Imager (ABI) has a spatial resolution of .5-km over the visible channel at 0.64 µm and 
2-km resolution over the infrared channels for timescales down to 15 minutes or less (continental 
U.S., every 5 minutes).  Thus, cloud albedo can be retrieved from the visible channel while the 
infrared channel can be used to estimate the cloud top heights. 

The satellite retrievals to be used in this project are described in White et al. (2017) and Haines 
et al. (2004) and are based on an implementation of the Gautier et al. (1980) method with 
improvements from Diak and Gautier (1983), Diak (2017), and subsequent refinements at UAH.  
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Refer to Pour-Biazar et al. (2007) and White et al. (2017) for further information about the 
retrieval method. 

3.2.3 Improving Land Surface Parameters 
The land surface is a critical component in local, regional and global modeling. Heat, momentum 
and scalar fluxes at the surface control temperature, turbulent mixing, winds and dry deposition 
of chemical species. Because of the importance of the characteristics of the land surface, there 
has been tremendous investment by the climate, weather forecasting and air quality communities. 
Much of this investment has gone into developing complex land surface models which include 
many intricate parameterizations that attempt to capture processes such as plant transpiration 
rates, leaf water interception, soil moisture and run-off, and parameterizations which control 
thermal and water transfer through canopies and soils (Sellers 1997, Pitman 2003). Thus, these 
models require additional parameter specifications to close the model systems. 

A second major area of investment has been the development of land-use classification data sets 
that attempt to define areas which are forested, croplands, urban areas etc. that can be used with 
the land surface models. The use of satellite data (with its observables such as greenness and 
albedo) has greatly improved the characterization of the surface into classes.   However, land 
surface models such as WRF-NOAH do not use land use classifications directly; rather, they use 
the physical parameters such as roughness, heat capacity, canopy thermal and water resistances, 
soil conductivity for water and heat capacity etc. that are associated with the land use classes. 
Thus, in the models such as the WRF-NOAH land use schemes, there are lookup tables that 
define these land-use associated parameters (Niu et al. 2011).  

Difficulty in Specifying Land Use Parameters and the Role of Satellite Observations: 
Unfortunately, the specification of some of these physical parameters is difficult even in 
homogeneous land use classes (Rosero et al.2009). For example, the rate of temperature change 
in vegetation is controlled by plant transpiration and evaporation through water resistance 
parameters and by the canopy thermal resistance. Thermal resistance depends on the heat 
capacity of the canopy and the thermal conductivity through the canopy (Noilhan and Planton 
1989). The water resistance depends on root zone moisture, the phenological state of the plant, 
leaf area, shaded leaf area etc.  Field measurements using towers are usually conducted to try to 
establish these parameters. But, in effect, many of the parameters or processes have to be 
deduced as residuals in local canopy models which are tied to specific turbulence and radiative 
models (Yang and Friedl 2003, Pleim and Gilliam 2009). Thus, the parameters are often model 
heuristics as opposed to fundamental observables (Wagener and Gupta, 2005) which is the 
reason a parameter such as canopy thermal resistance can vary by three orders of magnitude in 
different models (Pleim and Gilliam 2009). In inhomogeneous grid cells, which make up the real 
world, the situation is even worse (McNider et al 2005). Here, dominant land-use classes are 
often used in models such as NOAH but they may not represent well the actual mix of urban, 
crop and forest land uses. 

To determine the heat capacity (or bulk thermal resistance) of a single entity such as a brick in a 
laboratory setting, one would measure the amount of energy added and measure the 
corresponding change in the brick’s temperature. The ratio of heat added to temperature change 
defines the heat capacity and/or thermal resistance of the brick.  Now, look out your window and 
try to think how you might define the heat capacity or thermal resistance of the landscape you 
see. It seems a difficult task, if not an impossible task,  to imagine how you could a priori 



Use of Remote Sensing Data to Improve Air Quality Decision Support Systems Used to Protect 
Public Health Page 9 

 

amalgamate all the different features – trees, buildings, roads to arrive at a grid scale heat 
capacity. But the satellites can measure the aggregate thermal energy emitted from such 
landscape and measure the change of surface temperature caused by the change in input energy 
by the sun. Thus, in the same manner as in a laboratory setting, the heat capacity of the 
composite surface can be calculated. 

3.2.4 Satellite-based Estimates of Lightning-generated NOx (LNOx) 
Lightning constitutes a significant source of nitrogen oxides (NOx) in the middle and upper 
troposphere and plays an important role in tropospheric ozone production (Wang et al., 2015, 
2013; Koshak et al., 2014b; Biazar et al., 1995). LNOx is emitted over a deep tropospheric 
column. However, due to large concentrated number of lightning flashes in the storms, LNOx 
has significant impact on the background tropospheric chemical composition and may impact 
episodic air pollution events. Wang et al. (2015) showed that a summertime lightning event 
resulted in 28 ppb mid-tropospheric ozone enhancement over Huntsville, Alabama. Under 
previous ROSES calls, NASA funded projects to facilitate incorporating LNOx emissions in 
CMAQ (Koshak et al., 2014b; Allen et al., 2012). However, the current implementation in 
CMAQ distributes LNOx according to model predicted convective activities which may not 
agree with observations. With the data that will become available from the Geostationary 
Lightning Mapper (GLM) onboard GOES-16, near-realtime estimates of LNOx is now a 
possibility. In this project we introduce a new technique for estimating LNOx based on observed 
lightning energetics provided by GLM, and we will be testing it within CMAQ. 

3.2.5 Relevance to Partner Organizations’ Decision-making Activities 
Here we provide a short description of how these activities are of interest to the geographical 
setting of our partner organizations. 

3.2.5.1 Lake Michigan Air Directors 
Consortium (LADCO) 

Elevated ozone levels remain a concern for the 
Midwestern states. Similar to other regions in the 
eastern U.S., ozone episodes in this region are often 
under hot weather, clear or hazy skies, low wind 
speeds, high solar radiation, and winds with a 
southerly component that are associated with slow-
moving high pressure systems. Previous field 
studies over this region have indicated that the 
transport of ozone precursors from urban centers to 
areas over Lake Michigan, allows ozone production and accumulation within the shallow 
boundary layer over the lake, and a return flow due to Lake Breeze bring the elevated ozone back 
onshore and over the population centers (Koerber et al. 1991, Dye et al, 1995; Lyons et al. 1995). 
However, it appears that the air quality models overestimate ozone concentrations over cooler 
bodies of water, e.g., over Lake Michigan and Chesapeake Bay (Cleary et al., 2015; Loughner et 
al., 2014). Combined with the inaccuracies in the timing and extent of the onshore flow during 
the day, that transports the high ozone and aged precursors back over land, levels of ozone at the 
shorelines cannot be simulated accurately. This may be partly due to the representation of the 
stable boundary layer in the model and/or due to errors in lake and land temperatures that define 
the strength of lake/land breezes. 

 
Figure 1. LST retrievals for July 13, 2009 from 
MODIS onboard AQUA. 
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One may suggest that ozone overestimation over water can be attributed to the model being too 
stable. Then, the shallow stable layer over water would be analogous to a smog chamber (Dye et 
al 1995) which allows ozone production with little surface loss and this process might be 
responsible for the over-prediction. However, we will also investigate the possibility that models 
with too much mixing might partly cause an over-prediction. Our preliminary results with 
respect to Lake Michigan simulations indicate that a combination of using MODIS lake 
temperatures and short-tailed stability function (England and McNider 1995) can improve 
temperature and wind statistics under stable conditions. Figure 1 shows LST retrievals from 
MODIS (AQUA) for July 13, 2009. Use of MODIS lake temperatures significantly improved 
WRF simulations for this period. These results together with other components of this project 
would be beneficial to LADCO in their SIP modeling activities. 

3.2.5.2 California Air Resources Board (CARB)  
The formation and transport of ozone and buildup of particulates in California is largely 
controlled by the complex terrain and mesoscale meteorology of the region. During the summer, 
marine stratus along the California coast is a common feature. This is due to the interaction 
between the North Pacific High (due to conservation of absolute vorticity) and the cool marine 
boundary layer. Further inland, boundary layer 
heights are controlled by both surface forcing and 
the subsidence. In addition to the large scale 
subsidence, the mesoscale subsidence in the 
Central Valley (from daytime subsidence due to 
terrain and subsidence behind sea breeze fronts) 
also contributes to the descending air. Models 
often overestimate boundary layer heights over 
land, but overestimate marine stratus. 

Along the coast photolysis rates driving 
photochemical production are often controlled by 
marine stratus (see figure 2). In the presence of 
marine stratus, temperatures which impact 
biogenic emissions, evaporative and thermal 
decomposition of nitrogen species and photochemical production is suppressed. Thus, ozone and 
fine particle levels will be low. However, inland where skies are clear, temperatures and 
photolysis levels can be quite high. Additionally the thermal difference between land, ocean, and 
elevated terrain drives mesoscale circulations which can both transport pollutants and precursors 
as well as produce stagnant zones where pollutants can accumulate. 

California has large variations in land surface characteristics, both natural and manmade, which 
control surface temperatures and moisture fluxes which in turn impact boundary layer heights, 
mesoscale winds, biogenic emissions, and thermal decomposition.  In fact it is the temperature 
difference between land and sea that determines the strength and timing of the inland penetration 
of the sea breeze through the Sacramento Delta area. This in turn affects ozone production in 
inland areas. Further inland, it is the smaller scale temperature variations that modify the flow. 
The assimilation of satellite skin temperature to recover moisture and heat capacity proposed 
here would be of particular interest in such a setting as it promises to improve model boundary 
layer development. Correcting model overestimates of marine stratus is also of interest to CARB. 

Figure 2.  MODIS visible image showing land use 
variations and marine stratus for July 26, 2017. 
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3.2.5.3 Texas Commission on Environmental Quality (TCEQ) 
Texas has a varied physical atmosphere. In the east it is humid with substantial forest cover 
producing biogenic emissions. Fair weather cumulus and moist convection are a part of the air 
pollution climatology which must be dealt with in SIP modeling. Of particular note in Houston, 
the sea breeze is a critical part of the physical atmosphere. Late in the summer season, opposing 
synoptic flow can cause the sea breeze to develop late. Stagnant areas are produced as the 
opposing synoptic and sea breeze forcing battle. This leads to initial accumulation of precursors 
in the vicinity of the front with high photochemical potential that then moves northward across 
the metropolitan area. The temperatures and radiation impact biogenic emissions in the piney 
woods and mixed forest of SE Texas. 

In northern Texas, stagnant conditions associated with stationary fronts are a challenge to the 
physical modeling, both in temperatures and photolysis fields. In fact, past extreme events and 
SIP design periods for Dallas have included stationary fronts. Overnight transport can bring 
elevated backgrounds into Dallas. In west Texas, terrain and low soil moisture can produce high 
temperatures and deep mixed layers. Convective clouds also pose a challenge to TCEQ SIP 
modeling efforts as they are the dominant feature along the stagnant fronts in northern Texas and 
also along the coast. Due to these diverse physical characteristics over Texas, TCEQ is interested 
in all components of the current proposal.  

3.2.5.4 Georgia Environmental Protection Division (GEPD) 
Georgia’s physical atmosphere is not as diverse as California or Texas. However, it has unique 
aspects that make the physical modeling challenging. First, it has a high pollution potential due 
to its position relative to stagnating high pressure systems which have an axis along the 
Appalachians. This leads to low ventilation, and subtle land use changes from forests to urban 
surfaces can impact wind fields through surface temperature variations. As in east Texas, clouds 
can be a significant part of air pollution episodes. 

However, it is probably winds that are the most challenging in SIP development. Large NOx 
sources around Atlanta can produce plumes of ozone in the rich hydrocarbon environment. Here 
temperature and radiation are important as they impact the biogenic emissions.  Additionally, 
NOx from forest fires transported into the region can increase background levels of ozone.  

3.3 Methodology for Improving the DST 
3.3.1 Dynamical Adjustment of Clouds within WRF 
The cloud assimilation technique is based on creating a dynamic environment that is conducive 
to creation/removal of grid resolved cloud through the use of GOES cloud information.  The 
basic approach is to create positive vertical motion within the model to produce clouds and 
negative vertical motion to dissipate clouds based on observed cloud fields.  The use of FDDA 
allows for the assimilation of horizontal components of the wind into the model in space and 
time.  Therefore, the method provides a path to convert GOES cloud fields into vertical velocity 
estimates which are used to derive horizontal wind fields to be assimilated into the model 
through WRF FDDA.   

The technique uses disagreement between the model and the GOES cloud fields to identify areas 
of under-prediction (model is clear and the satellite shows cloudiness) and over-prediction 
(model is cloudy and the satellite indicates clear sky).  This is achieved by comparing satellite-
derived cloud albedo with that of the model. A threshold cloud albedo is used to account for 
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uncertainties in both the satellite retrieval (i.e. impact of aerosols and water vapor) and the model 
derived cloud albedo. Then, a target vertical velocity necessary to produce or dissipate clouds 
within the model is estimated and nudged into the model through the use of a one-dimensional 
variational technique based on O’Brien (1970). The adjusted divergence field *

ND  needed to 

achieve the vertical motion prescribed at a certain height within a column based on an original 
“first-guess” field for each level N can be calculated as: 
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Where DN  is the original divergence, hN  is the layer thickness, N* is the current level index 
relative to the adjustment boundaries, L* is the target level index relative to the adjustment 

boundaries, L  is the density at the target level, Lh is the original sigma-h vertical velocity at the 

target level and TLh  is the target sigma-h vertical velocity.  The adjusted divergence fields are 
then used to calculate the divergent component of the wind or the velocity potential.  To 
determine the velocity potential from divergence, the Poisson equation shown in (2) is solved 
using a simultaneous over-relaxation (SOR) scheme. 

NNMD 2                                                                  (2) 

Here, M is the sigma-h height scale, DN is divergence and N  is the velocity potential at any 

level N.  Once the velocity potential is known at each level, the new divergent component of the 
wind is added to the original rotational component of the wind field to fully construct a new 
horizontal wind field.  Note that (2) will be applied everywhere within the model domain while 
the divergence adjustment is only applied to disagreement areas between the model and GOES.  
The result is a new divergent component of the wind at every grid point but it also acts to 
balance the mass throughout the model domain. 

The inputs for the variational technique are estimated from a combination of satellite observation 
and model fields.  For under-prediction case, a parcel of air should be lifted to saturation in order 
to produce a cloud comparable to GOES observation. For over-prediction case, the model has 
created a cloud in a grid location that GOES indicated is not cloudy.  Thus, a downward 
displacement necessary to sufficiently warm the air parcels in order to evaporate the cloud will 
be estimated.  In both cases, the displacement distance constitutes the target vertical velocity.                 

Applying this technique to a case study during summer of 2006 (TexAQS-II) improved model 
cloud performance, precipitation, insolation, and modestly improved surface statistics for wind 
speed, temperature, mixing ratio (White et al., 2017). The technique was also used in WRF 
simulations over the summer of 2013 (July-September, Discover-AQ field study) and resulted in 
similar improvements in WRF simulations. However, for 2013, the impact of these 
improvements on air quality simulations was also examined. Figure 4 shows the reduction in 
model insolation bias when compared to the U.S. Climate Reference Network (USCRN) surface 
observations. Cloud correction resulted in 10% reduction in biogenic emission estimates, which 
in turn improved ozone predictions and reduced ozone bias by 63%. As shown in Figure 5, cloud 
assimilation resulted in remarkable agreement with ozone observations over VISTAS region on 
certain days. 

While model simulations with 36- and 12-km resolution might be adequate for the Clean Air 
Interstate Rule (CAIR), many of the SIP modeling activities requires model simulations with 
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finer grid spacing. In this project we will be testing the use of GOES-16 satellite observation, 
equipped with the Advanced Baseline Imager (ABI), which offers higher temporal and spatial 
resolution data.  This new dataset is expected to improve the ability of the assimilation technique 
for higher resolution model simulations, which are expected to become the norm for both 
meteorological and air quality simulations. 

 

3.3.2 LNOx Estimation from Recently Launched Satellite Lightning Imagers 
A methodology has been introduced in Koshak et al. (2014a,b) and further expanded and refined 
in Koshak (2017) for directly estimating LNOx, on a flash-by-flash basis, from the observed 
cloud-top lightning optical energy detected from satellite lightning imagers. In basic terms, the 
total energy of a lightning flash is inferred from the observed cloud-top lightning optical 
emission, and then the total energy estimate is multiplied by a thermochemical yield for NOx 
[i.e., 1017 molecules/Joule as given in Chameides (1979)]. The methodology provides only a 
relative trend in LNOx since it is necessary to pick a calibration scaling factor (or "� value") that 
sets the mean LNOx per flash in an arbitrary reference year to a widely accepted value (e. g., 250 
moles/flash as given in the review by Schumann and Huntrieser, 2007). The methodology has 
already been tested and applied using data from the Tropical Rainfall Measuring Mission 
Lightning Imaging Sensor (TRMM/LIS) as discussed in Koshak (2017). The same basic 
methodology will be applied to data from the International Space Station LIS (ISS/LIS; 
Blakeslee and Koshak, 2016) and to the GOES-16 weather satellite Geostationary Lightning 
Mapper (GOES16/GLM; Goodman et al., 2013) when post launch validation testing of these 
sensors is completed. Therefore, independent relative trends of the LNOx on a flash-by-flash 
basis will be obtained by project collaborator Koshak. The results will be at exceptional spatial 
resolution (~ 5 km for ISS/LIS; ~10 km for GOES16/GLM), and temporal resolution (~2 ms for 
both sensors). In addition, GLM will of course provide 24/7 continuous monitoring which is a 
substantial improvement over the low-earth-orbiting observations offered by LIS.  

Under this proposal, we will be providing the data and  as another standard product from our 
retrieval system (GPGS).  The data will be made available through the Global Hydrology 
Resource Center (GHRC) which is one of NASA’s Earth Science Data Centers. 

 
Figure 5.  Comparison of model ozone predictions from a 
CMAQ simulation that used control WRF and another that 
used WRF with cloud assimilation. 

 
Figure 4.  Reduction in bias for WRF insolation 
when satellite clouds are assimilated in the 
model (averaged over July-September, 2013).
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3.3.3 Surface Assimilation Techniques for Simple Land Use Models:  
The development of complex land surface models mentioned above (section 3.2.3) was 
consistent with the need in the climate modeling community for surface models that could be run 
for years without being touched by data. Thus, they needed vegetative surface interaction, water 
balance models, etc. However, Diak 1990, McNider et al 1994, Anderson et al. 1997 and others 
argued that for short-term weather forecasting and for retrospective air quality simulations 
(McNider et al. 1998, Pleim and Xiu 2003) simpler models that could be constrained by 
observations might be preferred. The simple models avoid setting many uncertain parameters as 
in the complex models.  This is the path to be pursued here with observational constraints 
provided by satellite skin temperature data. We will employ two techniques – 1) the Pleim-Xiu 
assimilation scheme (P-X) modified to use satellite skin temperature rather than NWS observed 
2m temperatures and 2) an updated form of the combined McNider et al 1994 (here after 
McN94) and McNider et al 2005 (here after McN05) incorporated into the Pleim-Xiu framework 
in WRF.   

Pleim-Xiu technique: Pleim and Xiu (2003) uses observed NWS surface temperatures to nudge 
moisture. The P-X approach adjusts surface layer moisture using the difference between model 
temperatures and relative humidity and analyses of observed temperatures and relative humidity. 
The Pleim-Xiu approach has been widely used and in recent California inter-comparisons, AND 
has performed better than the NOAH complex land surface scheme (Fovell 2013).  Because 
NWS observations are coarse, we propose to replace the observed temperatures with satellite 
skin temperatures, and replace model 2-m temperature with derived diagnostic skin temperature 
from the Pleim-Xiu scheme. 

McN94/McN05 technique: Basically, the McN94/McN05 retrieval of moisture and surface 
resistance performs a laboratory type experiment in the real world.  Carlson 1986 proposed that 
the two most uncertain parameters in the surface energy budget in terms of their impact and 
specification are the surface moisture and thermal resistance. We use the morning rise in satellite 
skin temperature to recover moisture and the evening decline to recover the thermal resistance.  
Mathematically, 
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where Es is the satellite derived evaporative flux as an adjustment to the original model 
evaporative flux, Em ,  mG dtdT / and   mR dtdT / are the ground temperature tendency in the 

model and satellite radiating skin temperature, respectively. Following Mackaro et al 2011  
)//()/( dtdTdtdT RG  is the internal fractional relationship in the model between the ground 

and skin temperatures (this is to avoid mixing the use of model ground temperatures and skin 
temperatures). The surface moisture is analytically recovered from the surface similarity 
relations. Here Cbs represents the satellite adjusted surface bulk heat capacity or thermal 
resistance to the model default Cbm.  Note that the use of tendencies avoids issues with errors in 
absolute temperatures. Due to space limitations here we cannot provide the complete equations. 
We have successfully implemented the McN94/05 technique within the Pleim-Xiu scheme in 
WRF and have carried out successful initial tests against flux tower observations. 

Land Surface Model Performance from Previous Studies: In a case study over TexAQS2000 
period, which was an extraordinary hot and dry period and the model was not able to reproduce 
maximum temperatures, the application of the McN94 was able to dry the surface and produce 
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much warmer temperatures and deeper boundary layer heights. While the moisture recovery 
alone over corrected and produced daytime temperatures that were too hot and humidity values 
that were too low, the addition of thermal resistance recovery (McNider et al. 2011) resulted in 
remarkable improvements in model moisture and temperature fields. However, we also noticed 
that in the surface energy budget formulation, there was no distinction between ground 
temperature and skin radiative temperature. This correction is described in Mackaro et al. (2011). 

More recently, the technique was implemented in WRF for Pleim-Xiu scheme and was tested in 
simulations for summers of 2013 and 2012. The assimilation improved model performance 
compared to NWS observations and the bias was reduced. The assimilation also improved model 
comparison to profiler wind data with substantial improvement in the low level jet at night. This 
is of particular interest to our partner organizations as it impacts long range transport and has 
implications for meeting EPA Clean Air Interstate Rule (CAIR). 

3.4 The Integration of Earth observations into the decision-making activity 
A major component of the current activity facilitates the retooling of software and updating the 
archiving system so that the satellite products continue to be available for our partner 
organizations as well as the broader user community. We will also make the tools and model 
codes available through EPA and CMAS websites. Throughout this process we will be working 
closely with the partner organizations to solicit their input and accommodate their needs. To 
facilitate the routine use of Earth observations, we adhere to the air quality modeling system that 
our partner organizations are currently using. This will ensure the successful integration of the 
techniques in our partners’ decision making process. The following describes the models and the 
data to be used. 

3.4.1 Modeling Activities 
We will be using the latest version of WRF/CMAQ (WRF-3.9/CMAQ-5.2).  Under a previous 
NASA Applied Science funded project, UAH has partly developed a technique for assimilating 
GOES skin temperature and cloud observations in the WRF. These techniques have proven to 
improve WRF performance.  Our baseline simulations will take advantage of these 
advancements. We will be measuring the incremental improvements made by our assimilation 
techniques (discussed previously in this proposal) to the meteorological modeling as well as air 
quality model performance by carrying out several sensitivity studies. 

UAH will be collaborating with our NASA collaborators on the implementation and testing of 
LNOx emissions estimates.  A module will be added to CMAQ for ingesting the new LNOx 
emission estimates and distributing it vertically according to the profiles described previously.  
Since our activities impact both NOx and BVOC emissions, we will be testing the impact of 
cloud assimilation and LNOx separately in different simulations to quantify and document the 
incremental improvements from each activity.  We will conduct WRF/CMAQ simulations for 
the summers of 2013 and 2016.  The 2013 period will be used for preliminary evaluations as it 
coincides with Discover-AQ field campaign.  Summer of 2016 has been suggested by our partner 
organization as a period of interest. We also will be using the techniques developed under 
previous NASA Applied Science funding that are relevant to the current activity. 

3.5 Estimate of the ARL of the Application 
Both cloud assimilation and skin temperature assimilation techniques have been developed and 
partially tested in the DST. Following NASA guidelines for Application Readiness Level (ARL) 
these activities are at ARL level 3. Because these components of application have been tested 



Use of Remote Sensing Data to Improve Air Quality Decision Support Systems Used to Protect 
Public Health Page 16 

 

and validated independently in WRF which is used in our partners’ decision making process and 
have produced promising results. With respect to the LNOx estimates, since more work is 
needed before it can be tested and validated independently, it is still at ARL 2. We will be 
following ARL guidelines to follow the progress of this project and anticipate reaching ARL 7 
(while having the potential of reaching ARL 9) by the end of this project. The added-value of the 
results from this project to our partners’ decision making process is significant and the project 
has the potential of reaching ARL 9. However, the sustained use of these techniques within the 
partner organizations may take longer and may happen beyond the life of this project. 

3.6 Challenges and Risks Impacting Project Success 
Our work for transitioning from GOES-13 to GOES-16 is based on the projected timetable 
suggested by NOAA for decommissioning GOES -13 and replacing it with GOES-16. NASA 
SPoRT center is currently in the process of transitioning to GOES-16. We anticipate that by the 
starting date for this project GOES-16 data will be available. Since we will be relying on SPoRT 
to produce the operational products, any interruption in their operation may adversely affect this 
project. However, since we are colocated with SPoRT (at the NSSTC), and share resources, we 
will be able to coordinate our efforts quickly to overcome such interruptions. Another issue for 
this project would be a change of priority with some of our partner organizations. Since our goal 
is to have the results of this project integrated in the DST, we will be working closely with our 
partners to make necessary modifications to fit their needs. 
4 Performance Measures 
We will be using NASA guidelines and Application Readiness Level (ARL) to track the progress 
of this project. Project performance will be measured by closely following the schedule and 
adhering to the timetable and milestones. Standard tools and measures established by EPA and 
the end-user community will be used to evaluate the added-value of this project to the DST. 
Model performance will be evaluated against a base case in which the best practice in the use of 
DST in its current state will be employed. For the base case we adhere to the guidelines of the 
partner organizations for their SIP development. In addition to standard statistical metrics, the 
evaluation will use the Atmospheric Modeling Evaluation Tool (AMET) (Gilliam et al., 2005) 
developed by U.S. EPA. This tool is being used extensively by EPA and our partner 
organizations to document the overall quality of meteorological and air quality modeling 
simulations which are being used for emission control strategy development. Data for 
meteorological model evaluation is obtained from Meteorological Assimilation Data Ingestion 
System (MADIS), provided by National Oceanic and Atmospheric Administration (NOAA).  

For evaluating performance of the meteorological model, EPA recommends statistical metrics 
and benchmarks suggested by Emery et al., (2001). A major component of this work targets 
improvements in model cloud simulations, surface fluxes and the boundary layer development, 
and LNOx estimates.  Since EPA does not provide any guidance on how to assess the adequacy 
of these fields, we consider it prudent to suggest “interim” performance benchmarks for these 
variables. Through a comprehensive literature review, the benchmarks will be reviewed, and if 
necessary revised during the course of this project. 

Additionally, working closely with our partner organizations, we will be convening regular 
conference calls and meetings to convey the progress of the project and to solicit their input 
about the priorities of the project. We will work with our partner organizations, so they can 
perform their own independent evaluation of the impact of assimilation techniques. This will also 
ensures the successful integration of our techniques in the DST. 
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4.1 Satellite Skin Temperatures as a Model Performance Metric 
While National Weather Service and other observations of air temperature have been used to 
examine the performance of meteorological models in air quality settings, the spacing of these 
thermometers and their sitting criteria means they cannot capture the variation in temperatures 
across all the different land uses. Almost all modern land surface models used in climate or 
weather forecast or air quality settings have a grid average radiating temperature or skin 
temperature. The NOAH land surface model (Niu et al. 2011) has a diagnosed skin temperature 
as one of its fundamental outputs. Satellites have long used atmospheric window thermal IR 
temperatures to provide estimates of surface radiating temperatures. Unlike standard 
thermometer based temperatures the skin temperatures observed by satellites (approximately 
2km in GOES-16 and 1 km in MODIS) provide a rich base for model inter-comparison. We will 
be using satellite skin temperatures as an additional observational set for model performance 
evaluation. 

5 Anticipated Results/Improvements 
The end result of this project will be the incorporation of an option to use NASA satellite data 
and science in the NERL/AMD supported and distributed WRF/CMAQ modeling system.  Also, 
a web site with all the relevant documentations, tools, and links to the required satellite data will 
be provided and maintained through the NASA data center (GHRC) to be accessed by 
government and private users. Based on expected positive benchmarking, the contributions from 
the proposed project should improve model characterization of the physical atmosphere by 
improving model surface properties, boundary layer development, cloud radiative impacts, and 
the representation of the chemical atmosphere by improving lightning generated NOx emission 
estimates and ozone and aerosol distribution. 

We anticipate improving surface O3 and total PM2.5 mass prediction through improvements in 
meteorological simulations and satellite-based LNOx estimates.  The expected improvements in 
model performance are based on results from our previous research funded by the NASA ESD 
and briefly mentioned earlier.  The generation and archiving near-real-time satellite-based 
products as explained in this proposal will benefit the larger air quality community beyond our 
partner organizations. 

The benefit to the Nation’s air-quality management system is the use of improved models to 
assess the efficiency and efficacy of control strategies for meeting the NAAQS.  In a modeling 
environment where tens of billions of dollars in industrial and mobile source controls depend on 
the outcome of these SIP activities, reducing errors in the specification of the physical 
atmosphere that bias or change the impact of emission reductions would be invaluable. 

Not only can the satellite data improve the robustness of the control strategy testing, but 
improved model performance will give confidence to regulators and to the industries being 
regulated that the models can be trusted.  The SIP process is one in which a consensus must be 
developed on how costly control measures will be implemented.  If regulated industries are not 
convinced that models are performing satisfactorily, then they may be reluctant to accept the 
results.  This in turn could mean SIPs would not be approved by State regulatory commissions, 
or if approved over the objections of industry, then costly and antagonistic litigation could result. 
When NASA set up its new Application Program to improve decision-making systems, CMAQ 
was one of the examples in the Air Quality focus area that might be improved by NASA science 
and data.  We believe that the present proposal is exactly in keeping with this paradigm. 
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6 Transition and Sustainability Plan 
We will be working closely with our partner organizations to solicit their input about the 
priorities of the project and have them engaged in the progress of the project. In the third year of 
the project, we will begin transition activities. The transition and distribution are made up of two 
parts.  The first is the code additions and changes within the WRF/CMAQ modeling system.  
The second is the dissemination and processing of satellite data. Scripts and software tools 
developed during this project will be part of the official WRF/CMAQ release that is distributed 
by U.S. EPA through Community Modeling and Analysis System (CMAS) center. Additionally, 
the tools will be tested at multiple locations including LADCO, California ARB, Georgia EPD 
and TCEQ. This will ensure a smooth integration within the end-user existing system. According 
to the needs of the end-users, a training meeting will be held towards the end of the project to 
provide additional support to the users. 

Model Code and Scripts:  A key aspect of the present project is to transfer the needed 
modifications to the DST (WRF/CMAQ system) supported by NERL/AMD.  This will be carried 
out by transferring UAH’s code changes to EPA.  While UAH will be directly interacting with 
scientists at EPA, CMAS center will provide the needed support to EPA for implementing and 
testing the code.  Initial tests will include replicating past satellite assimilation cases such as the 
2013 Texas DiscoverAQ field study.  Additional benchmarking can be carried out for other 
episodes or special periods of interest to EPA and our partners.  These episodes include the 
periods of interest to our partner organizations (currently, summer of 2016).  UAH and the 
NASA Short-term Prediction Research and Transition Center (SPoRT) will work closely with 
CMAS and EPA in the code transfer and testing process.  If the benchmarks are successful, 
NERL/AMD, working with OAQPS through CMAS, will be the focus for disseminating the 
codes in their supported versions of WRF/CMAQ.  This will be accomplished through their 
normal processes including workshops and including the EPA model clearinghouse. In addition 
to a User’s Manual, we will also provide a document that describes the rationale, scientific basis, 
and benefits of the enhancements in this project.  The PI is a member of CMAS steering 
committee and will oversee the transition activity. 

Satellite Data: While implementing the code changes is straightforward, the real heart of work 
is the ingestion of the satellite data.  Currently NASA-SPoRT center generates near-realtime 
products that will be used in this project. A major task in this project is the adaptation of retrieval 
software for GOES-16. Currently, UAH is archiving these products.  These products, along with 
documentation and tools are provided to the user community through a web interface.  Under the 
present project, we will be upgrading the web interface and will be providing skin temperature 
along with other derived products.  The most cost efficient mechanism for disseminating the 
satellite data for use in WRF/CMAQ and other models is to provide the tools, document, and the 
links to the raw satellite data through the Global Hydrology Resource Center (GHRC) a NASA 
data center. At the end of this project we will work with GHRC toward such transition. The 
distribution of the data would also take advantage of the existing GHRC structure.  This 
arrangement would parallel EPA relationships for land-use data sets with U.S. Geological Survey 
or meteorological data sets with NOAA-National Centers for Environmental Prediction.  In these 
cases, the data sets are critical to EPA’s modeling mission but because taking full responsibility 
for maintaining such a system lies outside EPA’s main mission and expertise, EPA relies on the 
other agencies. 
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7 Project Management and Schedule 
Dr. Arastoo Pour Biazar, University of Alabama in Huntsville (UAH, PI) will be responsible for 
coordination of all aspects of this research.  He also will be responsible for modeling efforts.  Dr. 
Pour-Biazar has been a member of EPA’s Models3 development team and has been involved in 
air pollution and atmospheric modeling studies from plume- to global-scale, and will oversee the 
implementation, benchmarking, and transition activities in this project.  Dr. Pour-Biazar is the PI 
of an ongoing project that has made the satellite-based photosynthetically active radiation (PAR) 
data available for the air quality community.  He is also a member of CMAS steering committee 
and served as co-PI on NASA’s Air Quality Applied Science Team (AQAST).  Dr. Pour-Biazar 
will be assisted by the following Co-Is for implementing different components of the current 
project. 

Dr. Richard McNider (Distinguished Professor, UAH, Co_PI) is well known in the air pollution 
community for his numerous scientific contributions over the years, among others, in mesoscale 
model development, atmospheric dispersion, boundary layer predictability, and satellite 
assimilation.  Dr. McNider, will be serving as a science-PI and will be directing the activity with 
respect to the surface energy budget and will oversee the implementation of this technique within 
the DSS.  He will be participating in the modeling effort and also in the interpretation of the 
results. He will be assisted by Dr. Maudood Khan (Co-I) and a post-doc for WRF and Air quality 
simulations. Additionally, Drs. Shuang Zhao (Co-I, economist) and Susan Alexander 
(collaborator, nursing) will perform societal impact analysis to quantify the added-value of this 
project. 

Drs. Christopher Hain (NASA, Co-I), Bradley T. Zavodsky (NASA, collaborator), and William 
Koshak (NASA, collaborator) are also accomplished NASA scientist in the area of remote 
sensing. Dr. Hain will lead the efforts at SPoRT (the NASA Short-term Prediction Research and 
Transition) for near-real-time satellite surface temperature retrievals. Dr. Zavodsky will lead 
efforts for generation of GOES-16 ABI products. Dr. Koshak (NASA, collaborator) will be 
responsible for satellite-based LNOx. They will be assisted by UAH personnel. 

7.1 Schedule 
The following presents a timeline for individual tasks as described in the text. 

TASKS
1. Retooling retrieval software for GOES-16 ABI
2. Generating ABI cloud related products
3. Generating surface temperature product
4. Identifying case studies with partner organizations
5. Performing control WRF simulations
6. Testing fine scale cloud assimilation
7. Testing skin-T assimilation over regions of interest
8. Performing baseline simulations
9. Lightning NOx (LNOx) algorithm development
10. Generating LNOx emission estimates for 2018
11. Evaluating LNOx estimates
12. Evaluation of DSTusing the new algorithms
13. Testing LNOx within CMAQ
14. WEBSITE upgrade, disseminating tools and data
15. Transition activities and benchmarking
16. Initial health and economic impact analysis

Year 1 Year 2 year 3
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8 Budget Justification: Narrative and Details 
The attached budget, requesting $870,753, provides the cost of the three years effort by UAH 
and partners. The majority of the budget is for personnel to carry out the data retrieval, analysis, 
and model runs. Dr. Arastoo Pour Biazar will devote approximately 1.5 months per year to this 
project and will serve as the Principal Investigator.  He will oversee the project direction and will 
be responsible for coordination and communications with EPA and end-users to ensure a 
successful transition of the techniques to the user community. He will also have a major role in 
performing model simulations and evaluation.   
 
Dr. Richard McNider will be responsible for surface energy budget activity and the 
implementation of the satellite assimilation technique within Pleim-Xiu scheme in WRF. Dr. 
Maudood Khan will be responsible for WRF and CMAQ simulations. Dr. Shuang Zhao will 
assist in performing impact analysis.  
 
Drs. Christopher Hain (NASA, Co-I), Bradley T. Zavodsky (NASA, collaborator), and William 
Koshak (NASA, collaborator), an accomplished NASA scientist in the area of remote sensing, 
will lead the efforts at SPoRT (the NASA Short-term Prediction Research and Transition) for 
near-real-time satellite retrievals. Dr. Koshak will provide satellite-based lightning NOx 
estimates. A UAH research associate and a student will be assisting them in adapting the 
retrieval software for GOES-16. 
 
The team will be assisted by research associates and graduate students who will be helping the 
PI, CO-Is, and NASA collaborators to fulfill their responsibilities.  During the third year of this 
project, UAH will work with EPA and partner organizations on transition activities.  UAH will 
be upgrading the satellite data distribution web-interface and will work with the NASA SPoRT 
center and GHRC for near-real-time production and distribution of derived products. 
 
UAH computing facility will be used for model runs and storage.  Since this project requires 
visualization, analysis and archiving of a large volume of satellite data, in addition to UAH 
computing facility we will purchase additional storage and PCs, dedicated to the needs of this 
project. These will complement the existing UAH facility.  The additional data storage is needed 
to store the new satellite products from GOES-16 (due to higher spatial and temporal resolution 
of observations). Additional computing and storage purchased for this project will be dedicated 
to the scientific needs of this project.  Dell PowerEdge will be used for reprocessing the 
historical data and also for the upgrade to the web-site.  The PCs will be used for producing 
images for graphical display on the web-site, data ingest, and monitoring data flow between 
NASA and UAH machines. 
 
Funds have also been allocated for publications and travel to meetings with EPA, partner 
organizations, and other professional meetings.  
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9 Facilities and Equipment 
Under the present project UAH and NASA (NSSTC) would operate and maintain the satellite 
processing system.  The NASA Short-term Prediction Research and Transition (SPoRT) center, 
co-located at NSSTC, currently operates the Geostationary Operational Environmental Satellite 
(GOES) Product Generation System (GPGS).  GPGS is a set of computer programs designed to 
generate meteorological data products in real-time or case-study mode using measurements from 
the GOES-East Imager and Sounder instruments. GPGS has been operating since 1998 and has 
been generating Imager and Sounder products since 2000. Products generated from the Imager 
and/or Sounder instruments are skin temperature, total precipitable water, cloud top pressure, 
cloud albedo, surface albedo, and surface insolation. Intermediate products used to create the 
primary products are cloud mask and 20-day clear-sky composite images in the visible and 
infrared spectral regions. 
 
UAH facilities comprise total of 37 GIS & RS computers with powerful state of the art GIS and 
image processing software. The workstations are equipped with industry standard ESRI ArcGIS 
10.5 with Spatial, 3D, and Geostatistical Extensions as well as ENVI 5.4+Zoom and ENVI 5.0, 
and IDL 8.6 software packages.  For CPU intensive applications/models, we operate a high 
performance Linux cluster with 1224 processor cores and 9 TB of memory. Network based 
storage is available for high volume data, as is a high speed network link (Internet 2) for 
collaboration with other educational institutions and government agencies. We are a Tier2 level 
provider for LDM data feeds. 
 
Through our collaboration and colocation with NASA SPoRT center we will have access to 
realtime GOES-16 data. NASA’s Marshall Space Flight Center GOES-R series GOES 
Rebroadcast (GRB) receiving system consists of a 6.5 meter diameter antenna with motorized 
pointing, a dual-channel L-band feed, Low noise amplifiers and demodulator. A data acquisition 
computer is directly connected to the demodulator unit; a data processing computer is used to 
derive Level 2 products from the ABI instrument. The current system receives data from GOES-
East. The system receives data from the ABI, GLM, SUVI, MAG, SEISS and EXIF instruments. 
Data is disseminated via the Ethernet within NASA and to our partners in near-real time. A 
second receiving station is in process of being installed and will be used to acquire data from the 
GOES-S satellite once it launches. 
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