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Motivation

e July 2010 - Sierra Club petitions EPA to
designate air quality models for PSD permitting

January 2012 — EPA grants Sierra Club’s petition
and commits to updating the Guideline on Air
Quality Models (Appendix W)

Regional photochemical modeling is best
science for addressing ozone impacts, but
computational intensive and impractical for
routine permitting

Regulators would like an easy to use screening
tool to assess the ozone impact of stationary
sources for PSD permitting applications



Reduced Form Models

e Use regional photochemical model results to
develop a simplified localized framework
— Equivalency Ratio (Margaret McCourtney, MPCA)

— Interpollutant Trading Ratios (James Boylan,
Georgia EPD)

— Response Surface Model (Carey Jang, EPA)
— Parametric Model (Greg Yarwood, ENVIRON)




Background

 Parametric Model (Yarwood, 2011)

— Screening tool developed for Sydney

e 3 Km CAMx higher-order direct decoupled method
(HDDM) simulations of the summer

* Assumptions:

— Ground source
— Located at center of

emissions by mass

Yarwood, G., Scorgie, Y., Agapides, N., Tai, E., Karamchandani, P,
Bawden, K., Spencer, J., Trieu, T, 2011. A screening method for ozone
impacts of new sources based on high-order sensitivity analysis of
CAMXx simulations for Sydney. Proceedings, 10th Annual CMAS
Conference, Chapel Hill, NC.




Background

i

Base Ozone ]

BF Ozone }
Impact

> CAMX
T
[ Base Emission 1 s
Inventory L l
CAMx

Ozone W/

] [ HDDM Ozone ]
Point Source

Impact

o

[ Single Point }
Emissions

V [03 ] = VENOX 203 ] + VEVOC 203 ] + %

NOy

_{

27 Order }
Taylor Series

HDDM Ozone
Sensitivities ] [

2nd order Taylor series

voc

VE;O éjl [032] + VEVOC VENO a [03 ] + VEIfOC éy [032]
" OE " OE 2

NOy yoc NOy voc



Background

Decoupled direct 3D sensitivity analysis for particulate
matter (DDM-3D/PM)
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Abstract

The decoupled direct method (DDM) and DDM-3D have been implemented in air quality models in order to efficiently
compute sensitivities. Initial implementation of DDM/DDM-3D in models was confined only to gas-phase species as the
treatment of sensitivities in the dynamics of secondary aerosol formation is more complex. Here, it is extended to calculate
particulate matter sensitivities. DDM-3D/particulate matter (PM) results compare well spatially and temporally with the
traditional brute-force approach, particularly for species responses to emissions of their “‘parent™ precursor (e.g., sulfate to
SO, emissions.) Correlations of more indirect relationships between aerosols and gaseous emissions (e.g., nitrate to SO,
emissions) are worse, but these sensitivities are usually small. DDM-3D/PM appears to work better than the brute-force
approach in some cases due to numerical noise and other factors, as identified from the application on a southeastern US
domain for a summer episode. DDM-3D/PM is also computationally efficient. While CPU usage was found to scale
linearly with the number of sensitivity parameters of interest (for a given domain size), it was significantly less than using
the brute-force approach.

(© 2006 Elsevier Ltd. All rights reserved.
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Problem Statement

* Question: How do ozone sensitivities to
emission rates vary with emission rate and
stack characteristics?

* Approach: Use multiple CAMx HDDM
simulations of individual point sources to train
a statistical model to empirically relate

Szf(E E SH,Vx,Vy)

NOy 2"~ voc




Methodology

Proof of concept conducted for test case in

lllinois

Based on LADCO 2007 Modeling platform
e 4 km CAMx HDDM modeling of summer 2007
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Methodology

VOC (tpy)

e 20 hypothetical point sources modeled with

HDDM
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Training Data Point 2

Oy 8-hr Max Source Impact 1.286 ppb (42.2, -86.2)
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Training Data Point 5

Enox = 80 tpy, Eyoc = 197 tpy, SH = 48 ft

Brute Force

Oy 8-hr Max Source Impact 0.775 ppb (40.1, -88.2)
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Training Data Point 6

Enox = 943 tpy, Eyoc = 70 tpy, SH =454 ft

Brute Force HODDM
Oy 8-hr Max Source Impact 6.032 ppb (40.3, -88.2) Oy 8-hr Max Source Impact 3.493 ppb (40.3, -BB.2)
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Training Data Point 9

Enox = 610 tpy, Eyoc = 25 tpy, SH =194 ft

Brute Force

Oy 8-hr Max Source Impact 0.9532 ppb (40,5, -89.5)
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Training Data Point 18

Enox = 380 tpy, Eyqc = 51 tpy, SH = 268 ft

Brute Force

4 8-hr Max Source Impact 3.82 ppb (37.5, -BB.8)
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Summary

* FE matches HDDM training data well

 FE/HDDM matches BF in magnitude and
extent of impact, however BF produces a
higher peak impact

* FE Model would benefit from additional
training data



Methodology
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Statistical Models

* Potential statistical models
— CART
— Neural network
— Kriging
— Fixed-Effects
— Response Surface Model



Future Work

Investigate differences in peak impact
predicted from BF and HDDM

Implement multivariate universal cokringing

— Accounts for covariance among HDDM
sensitivities

Examine different VOC profiles
Explore other statistical models

Apply methodology to develop PM screening
tool
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20 HDDM Modeled Point Sources
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LADCO 2007 Modeling Platform

e Ozone Performance
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