Process-based model to estimate agricultural livestock ammonia emissions

Midwest and Central States Air quality workshop April 22 - 24, 2014

Minnesota Pollution Control Agency

Margaret McCourtney <u>margaret.mccourtney@state.mn.us</u>

Discussion topics

- Agricultural livestock role in fine particulate (PM_{2.5}) concentrations
- Manure management at farms
- LADCO process-based farm emissions model
 - Background
 - Summary of what the model does
 - Validation of model NAEMS dairy and swine
 - Current state of the model

Ammonium nitrate is significant in the upper Midwest

Seasonal PM_{2.5} composition for select urban areas 2008-2010

Source: U.S. EPA

Agricultural livestock

...make up 63% of national ammonia emissions

... emit a total of 33,200 tons ammonia/year

In Minnesota alone... there is a lot of livestock

Manure management at farms

Emission calculation methodology

- USEPA and Carnegie Mellon University statistical model based on measurement data (NAEMS study)
 - Science Advisory Board* recommends first-principles process-based model. EPA announced on April 15 NACAA Agriculture committee call they are not pursuing at this time.

*<u>http://yosemite.epa.gov/sab/sabproduct.nsf/0/ae6639dd6b79360e852579a4004e5529!OpenDocument&Tab</u> <u>leRow=2.3#2</u>

LADCO ammonia model history

- 2003 2004 Lake Michigan Air Directors Consortium (LADCO) contracts with UC-Davis and UC-Riverside to integrate UC-Davis processedbased emissions model into CONCEPT (Beta version 0.1)
- 2008 LADCO contracts with UC-Riverside to re-write model in C/C++ to substantially decrease model computational time (Beta version 0.1)
- 2013-2014 Minnesota tests, refactors, does minor repairs, validates model performance and provides documentation

Current model structure and status

- Land application is incomplete
- Storage one model for all animal types, basin not lagoon

Model input variables

where

 $N_{CO(NH_2)_2}$ = urea nitrogen concentration (kg/m³) N_T = total nitrogen concentration (kg/m³) $N_{organic}$ = organic nitrogen concentration (kg/m³) NE_T = total nitrogen excretion per animal (kg) DME_T = total dry matter excretion per animal (kg) DOF = days on feed

where

- $F_B =$ volumetric flow rate of ventilation air (m³/s)
- E_{NH_3-N} = rate of vaporization of ammonia from the urine (kg/s)

1000 1001

 $\frac{1}{V_{P}} \Big[\mathsf{F}_{B} \mathsf{C}_{\mathsf{NH}_{3}-\mathsf{N}} gas, ambient - \mathsf{F}_{B} \mathsf{C}_{\mathsf{NH}_{3}-\mathsf{N}} gas, air + \mathsf{E}_{\mathsf{NH}_{3}-\mathsf{N}} \Big]$

Housing

 $d\mathsf{C}_{\mathsf{NH}_3-\mathsf{N}}$ gas,air

dt

$E_{NH_3-N} = K_L \times F \times C_{TAN} \times A$

Storage

where

- K_L = the mass transfer coefficient (m/s)
- $C_{TAN} = concentration of TAN in the storage basin (kg/m³)$
- F = fraction of TAN present as free ammoniacal N
- A = surface area of the storage basin (m²)

Validation with national air emissions monitoring study (NAEMS) housing data

Housing sub-model input data summary

Parameters	Farms			
	Marshall County IA	Carroll County IN	St Croix County WI	Jasper County IN
Animal Type	Swine (gestation)	Swine (finishers)	Dairy	Dairy
Number of Animals	1020	1064	211	850
Animal Weight (kg)	249	64	703	700
Barn Length (m)	86	86	93	472
Barn Width (m)	25	61	28	29
Eve Height (m)	3.3	12	4	4.3
Roof Slope	4:12		4:12	4:12
Ventilation	mechanical	mechanical	mechanical	mechanical

Swine barn – Marshall County, Iowa

Daily mean time series plot of NH3 modeled at Iowa swine barn (IA4B-barn2)

Swine barn – Carroll County, Indiana

Daily mean time series plot of NH3 modeled at Indiana swine barn (IN3B-room5)

Dairy barn – St. Croix, Wisconsin

Daily mean time series plot of NH3 modeled at Wisconsin dairy barn (WI5B-barn1)

Dairy barn – Jasper county, Indiana

Daily mean time series plot of NH3 modeled at Indiana dairy barn (IN5B-barn1)

Housing ammonia/ventilation relationship

- Ammonia emissions from housing have a strong relationship with building ventilation
- Ventilation rates to maintain constant temperature inside the barn
- Temperature inside the barn varies with outside temperature, animal heat production, and heat flow through walls & roof

Dairy barn – Jasper county, Indiana

21

Model package – MPCA deliverables to LADCO

- Model code—refactored, most recent version— C++
- Default input data files (or examples)
- Run scripts
- Documentation (web browser application)
 - Code
 - Code function what the model does
 - Requirements what the science document says model should do
 - Enhancements list
 - Flow diagrams
 - Manure management practices
 - Data
 - References (Science document, published articles, other)
 - Sensitivity analysis
 - Validation of housing model for dairy and swine
 - upper MidWest NAEMS data
 - User's manual

Acknowledgements

Minnesota Pollution Control Agency

Azra Kovacevic , Kim Brynildson, Jim Sullivan & Kari Palmer

Lake Michigan Air Directors Consortium

Mark Janssen & Rob Kaleel

Original science and model developers

- Ruihong Zhang, Tom Rumsey, James Fadel University of California , Davis
- Zion Wang—University of California , Riverside
- Jactone Arogo Virginia Technology University
- Hongwei Xin—Iowa State University
- Gerard Mansell—ENVIRON International Corporation