Development of a LADCO Total Risk Air Quality Management Framework

Zac Adelman LADCO Executive Director

Presented at the EPA Region 5 Air Toxics Risk Assessment Meeting

October 23, 2018

Objective

Enhance knowledge at LADCO to include decision support capabilities for considering health risks and emissions control costs for multiple air pollutants

Approach

History Lesson

 Review the evolution and current state of multipollutant air quality management (MP-AQM)

Self Discovery

 Review LADCO technical capacity in the context of MP-AQM

Capacity Building

 Work with EPA to augment LADCO's technical capabilities to support the MP-AQM life-cycle

Make Friends

Develop relationships with EPA, SLTs, and stakeholders

Key Moments in MP-AQM History

Technical and Policy Recommendations

- Air Quality Management in the United States (NRC, 2004)
- Technical Challenges of Risk and Results Based Multi-pollutant Air Quality Management (NARSTO, 2007)
- Recommendations to the Clean Air Act Advisory Committee (AQM Subcommittee, 2007)
- Multi-pollutant Air Quality Management (Hidy and Pannell, 2010)

Pilots and Case Studies

- A Multi-pollutant, Risk-based Approach to Air Quality Management: A Case Study for Detroit (Wesson et al., 2010)
- St. Louis Air Quality Management Plan (MDNR and IEPA, 2010)
- U.S. EPA South Carolina Collaboration to Develop a Multipollutant, Risk-based Air Quality Management Strategy for the Upstate South Carolina Region (SCDHEC and EPA, 2016)
- SCAQMD and BAAQMD Air Quality Management Plans

MP-AQM Framework

SCDHEC & EPA (2016) MP-AQM project template

- 1. Project planning and team building
- 2. Data acquisition
- 3. Develop emissions control strategies
- 4. Calculate emissions control costs (CoST)
- 5. Air quality modeling (CMAQ/CAMx/AERMOD)
- 6. Adjust NATA with local emissions controls
- 7. Acquire local health data
- 8. Analysis, results, and conclusions
- Craft and implement air quality management strategy

MP-AQM Framework

SCDHEC & EPA (2016) MP-AQM project template

- 1. Project planning and team building
- 2. Data acquisition
- 3. Develop emissions control strategies
- 4. Calculate emissions control costs (CoST)
- 5. Air quality modeling (CMAQ/CAMx/AERMOD)
- 6. Adjust NATA with local emissions controls
- 7. Acquire local health data
- 8. Analysis, results, and conclusions
- Craft and implement air quality management strategy

LADCO's
Current (2018)
Capabilities

MP-AQM Framework

SCDHEC & EPA (2016) MP-AQM project template

- 1. Project planning and team building
- 2. Data acquisition
- 3. Develop emissions control strategies
- Calculate emissions control costs (CoST)
- 5. Air quality modeling (CMAQ/CAMx/AERMOD)
- 6. Adjust NATA with local emissions controls
- 7. Acquire local health data
- 8. Analysis, results, and conclusions

Craft and implement air quality management strategy

LADCO's
Current (2018)
Capabilities

Where we will need outside collaboration

2016-18 Preliminary O₃ DVs

- > 0.08 0.088
- > 0.075 0.08
- > 0.07 0.075
- > 0.065 0.07
- > 0.06 0.065
- 0.049 0.06

Persistent attainment issues for the 2008 and 2015 O₃ NAAQS

Recent PM_{2.5} Design Values

PM_{2.5} NAAQS progress is good; indication that local/seasonal PM issues (hotspots) continue to be a problem in some areas

2014 National Air Toxics Assessment

Cancer Risk - Total Risk

> 100

75 - 100

50 - 75

25 - 50

6 - 25

Zero Pop Tracts

Elevated air toxics risks in urban areas and in the southern part of our region.

Beyond the Pilot

Leverage LADCO technical capabilities to support MP-AQM planning across the region

Beyond the Pilot

- Is there interest/capacity in the states to pursue MP-AQM?
- What has happened since St. Louis and Detroit?
 - What did these states learn?
- Now that we have a technical roadmap for MP-AQM support, is there also a regulatory roadmap for states?
 - What statutory flexibilities are available for a state air program that wants to use MP-AQM?
- Is there space for MP-AQM in EPA's back-to-basics approach to clean air regulations?

LADCO's Next Steps

Manage expectations

MP-AQM support is a 5 year plan for LADCO

Transparency

 Maintain a constant dialogue with our states to keep them informed about our work in this area

Tread lightly

 All technical planning and analysis will be passed by our states before discussions in a wider forum

Capacity Building

 Develop air toxics, emission control cost, and health impacts modeling capacity at LADCO