LADCO Winter 2018 Update

Zac Adelman LADCO Executive Director

Presented to the Three Rivers Manufacturers Association

March 21, 2018

MJOs in 2018

LADCO Background

- Formed in 1989 to bring Michigan, Indiana, Illinois, and Wisconsin together to address high ground level ozone in the region
 - Ohio joined in 2004; Minnesota joined in 2012
- Air pollution science, training, and planning support for the state (and tribal & local) air management agencies in the region
- Provides a forum to discuss regional air pollution issues
- Technical lead in the region for continental to urban-scale atmospheric modeling: meteorology, emissions, and chemistrytransport
- Current Events
 - New leadership as of September 2017
 - New modeling and business staff as of January 2018

- Boundary Waters (MN) shows improvement in Most Impaired Days metric, starting around 2010
- 2011 to 2016 trend follows emissions
- Driven by NO₃ and SO₄

- Seney (MI) shows improvement in Most Impaired Days metric, starting around 2008
- 2011 to 2016 trend follows emissions
- Driven by SO₄

Recent PM_{2.5} Design Values

Annual PM_{2.5} Design value = 3 year average of annual mean PM_{2.5}

Recent Ozone Design Values

Recent Ozone Design Values

Lake Michigan Ozone Study

May – June 2017 Western Shore of Lake Michigan

Background on LMOS

Ground level ozone concentrations in the region have improved significantly since the mid-90s.

Background on LMOS

Persistent High O₃ at Coastal Sites

•NO_x + VOCS + sunlight
$$\rightarrow$$
 O₃

•NO_x + VOCS + sunlight \rightarrow O₃

But not the ratio of NOx to VOCs across the region → key to policy design

- •NO_x + VOCS + sunlight \rightarrow O₃
- Ozone precursors from IL, IN, MI, WI (& more!) "cook up" over Lake Michigan

- •NO_x + VOCS + sunlight \rightarrow O₃
- Ozone precursors from IL, IN, MI, WI (& more!) "cook up" over Lake Michigan

But we don't know how much is attributable to each state under changing conditions

- •NO_x + VOCS + sunlight \rightarrow O₃
- Ozone precursors from IL, IN, MI, WI (& more!) "cook up" over Lake Michigan
- Ozone values at the monitors

- •NO_x + VOCS + sunlight \rightarrow O₃
- Ozone precursors from IL, IN, MI, WI (& more!) "cook up" over Lake Michigan
- Ozone values at the monitors

But not over water bodies, or away from the monitors on land

- •NO_x + VOCS + sunlight \rightarrow O₃
- Ozone precursors from IL, IN, MI, WI (& more!) "cook up" over Lake Michigan
- Ozone values at the monitors
- What the models tell us about lake breeze & chemistry

- •NO_x + VOCS + sunlight \rightarrow O₃
- Ozone precursors from IL, IN, MI, WI (& more!) "cook up" over Lake Michigan
- Ozone values at the monitors
- What the models tell us about lake breeze & chemistry

But the models may not resolve, include, or correctly capture key processes

Motivations for LMOS

- Persistent high O₃ at some coastal sites
- Planning needs of the LADCO states require further clarity on regional O₃ production
- Last field campaign: summer 1991
- Need for a new study: New instruments/satellites and scarce aloft and over-lake observations

Geostationary **Trace** gas and **Aerosol**

LMOS Objectives

- Measure the concentrations of O₃-relevant compounds
- Quantify the relative contribution of inter- and intra-state NO_x and VOC emissions and emissions sources on O_3 production rates along Lake Michigan
- Evaluate and improve meteorological and chemical transport model skill
- Study link between lake breeze circulations and O₃
- Analyze the causes of concentration differences between coastal and inland sites with observations and model data
- Develop best practices for O₃ planning modeling

1st Law of Measurement Campaigns?

Typical Regional Ozone Event

Credit: A. Dickens, LADCO

00:0

LMOS Study Design

- Observations
 - Aircraft
 - Ship
 - Mobile on-shore
 - Zion, IL Supersite
 - Sheboygan, WI Ground Site
- Forecasts
 - WI DNR
 - NOAA NESDIS
 - U. Iowa
 - NWS

LMOS Airborne Platforms

NASA GeoTASO NO2 Column Mapping Over Chicago June 19, 2017

Scientific Aviation Measurement Flight Paths

Next Steps

- Internal synthesis report detailing the measurements, modeling, and data collected during LMOS (early 2018)
- Meteorology & photochemical modeling best practices for modeling ozone in the region (early 2018)
- Explore a long-list of scientific questions with LMOS data (2018 and beyond)
- Synthesis paper in the peer-reviewed literature (summer 2018)
- Merge datasets for public release (fall/winter 2018)
- Technical papers in the peer-reviewed literature (2019)

LMOS Investigators

- M. Christiansen, C. Stanier, G. Carmichael, E. Stone (University of Iowa)
- T. Bertram (University of Wisconsin)
- D. Millet (University of Minnesota)
- P. Cleary (University of Wisconsin Eau Claire)
- A. Czarnetzki (University of Northern Iowa)
- B. Pierce (NOAA/NESDIS)
- J. Szykman, R. Long, M. Fuoco (U.S. Environmental Protection Agency)
- A. Dickens, (Wisconsin Dept. of Natural Resources)
- R. Kaleel, D. Kenski (LADCO)
- J. Al-Saadi, L. Judd (NASA Langley Research Center)
- S. Janz, M. Kowalewski (NASA Goddard Space Flight Center)
- S. Conley (Scientific Aviation, Inc)
- N. Abuhassan (GSFC/UMBC)
- S. Shaw (Electric Power Research Institute)

LMOS Funding

- NSF AGS-1712909, NSF 1712828, NSF 1713001
- NOAA/NESDIS GOES-R Program Office
- Electric Power Research Institute (EPRI)
- Lake Michigan Air Directors Consortium (LADCO)
- Significant personnel and equipment contributions from USEPA, NASA, EPA Region V, and LADCO member states

National Inventory Collaborative

- A new multi-purpose emissions modeling platform (EMP) based on the 2014 National Emissions Inventory version 2 (2014NEIv2) is needed
 - State Implementation Plans, federal analyses
- Regional organizations and states asked to be more involved in the development of national EMPs
 - Need for broader input into the methods used, especially for "projections" of emissions to future years
- For the first time, EPA, states, and MJOs are engaging in collaborative EMP development
 - The 2016 base year was selected via a collaborative process
 - Process and timing are evolving
 - Participation in the EMP collaborative is voluntary

Organizational Structure

- <u>Coordination co-leads</u>: Zac Adelman (LADCO) and Alison Eyth (EPA OAQPS)
 - Developed process and communication structures, facilitate discussions, help resolve issues, documentation requirements, coordinate distribution of data to stakeholders
- Coordination committee: regional, state, EPA leaders
 - Define processes, resolve issues, co-lead workgroups
 - Includes overall and WG co-leads plus MJO directors
- <u>Sector-specific Workgroups</u>: one regional/state staff and one EPA staff (where possible)
 - Focus on preparing emissions estimates for 2016 and future years, plus improve how the emissions sectors are modeled
 - Include participants from EPA/states/locals/regions

Workgroup Overview

Workgroup	Co-leads	Members
Biogenics	Jeff Vukovich (OAQPS), Doug Boyer (TCEQ)	10
Fires	Jeff Vukovich (OAQPS(, Tom Moore (WESTAR)	30+
Oil and gas (point+nonpoint)	Tom Moore (WESTAR), Jeff Vukovich	30+
Nonpoint (dust, RWC, ag, other)	Caroline Farkas (OAQPS), Chris Swab (OR)	30+
Non-EGU point (includes aircraft)	Caroline Farkas (OAQPS), Tammy Manning (NC)	30+
EGUs	Julie McDill (MARAMA), Serpil Kayin (OAP)	30+
Onroad	Julie McDill (MARAMA), Alison Eyth (OAQPS)	30+
Marine	Mark Janssen (LADCO), Michael Aldridge (OTAQ)	20+
Rail	Mark Janssen (LADCO), EPA OAQPS EIAG	30+
Nonroad	Sarah Roberts (OTAQ), Joe Jakuta (OTC)	30+
Meteorology	Chris Misenis (OAQPS)	15
International	Alison Eyth (email only)	10

2016 EMP Schedule

- Several versions of 2016 platform will be developed
 - <u>Alpha</u>: preliminary version with 2014 NEIv2 scaled for most and 2016 emissions for some sectors for initial testing of 2016 model runs (March, 2018)
 - <u>Beta</u>: *improved and/or new* version of actual 2016 emissions for most sectors and preliminary projected emissions to 2023 and 2028 (Summer-Fall, 2018)
 - Exact timing of beta 2016 and projections is uncertain
 - <u>V1.0</u>: fully updated 2016 emissions and complete projected emissions for 2023 and 2028 (Winter, 2019)
- Schedule overlaps with 2017 NEI Development
 - Prioritize the 2017 NEI over the 2016 platform, as needed
 - Any missing data for 2016 will be filled in based on 2014 NEI data and nationally consistent methods

Regulatory Issues @ LADCO

• 2015 O₃ NAAQS

- Final designations in April
- Likely marginal status for all violating LADCO monitors
- iSIPs (including "Good Neighbor" SIPs) due October 2018
- Marginal NAA SIPs due October 2019
- Attainment demonstration (SIP) not required for marginal

2008 O₃ NAAQS

Chicago bump up from moderate to serious status this summer

Regional Haze

Round 2 SIPs due June 2021

Technical Analyses @ LADCO

- Regional Photochemical Modeling
 - 2023 CAMx Source Apportionment for 2015 O3 NAAQS Transport
 - 2016 WRF/CAMx/CMAQ modeling for O3 and Regional Haze
- Emissions Modeling
 - Inventory Collaborative
 - Analysis/improvement of mobile sources: onroad, offroad, rail, 40' marine
- Meteorology Modeling
 - WRF optimization for high ozone conditions

Questions and Contact

Zac Adelman

Executive Director

Lake Michigan Air Directors Consortium

adelman@ladco.org