LADCO and Air Quality Planning in the Great Lakes Region

Zac Adelman LADCO Executive Director

Environmental Law & Policy Center Brown Bag April 15, 2019

Regional Changes in CEM* Emissions: 2000-2018

Energy Sector Changes Impact on Midwest Air Quality

Energy Sector Changes Impact on Midwest Air Quality

Energy Sector Changes Impact on Midwest Haze

- Boundary Waters (MN) shows improvement in Most Impaired Days metric, starting around 2010
- 2011 to 2017 trend follows EGU SO₂ emissions
- Driven by NO₃ and SO₄

Energy Sector Changes Impact on Northeast Haze

- Brigantine (NJ) 2017 measurements follow the continued improvements in haze since mid-2000's
- Driven by NO₃ and SO₄

Haziest Davs

U.S. Total Anthropogenic Emissions Trends: NEI Annual SO₂

Annual Emissions Totals for the Lower 48 States: 2000-2017 US EPA Air Pollution Emissions Trends

U.S. Total Anthropogenic Emissions Trends: NEI Annual NOx

Annual Emissions Totals for the Lower 48 States: 2000-2017
US EPA Air Pollution Emissions Trends

Recent PM_{2.5} Design Values

Annual PM_{2.5} DV 3 year average of annual mean PM_{2.5}

PM_{2.5}: Region-wide DV Trends

Only monitors with 11 or more years of complete data, not including IL Design value plotted by end year of 3—year period.

Ozone: 2018 Design Values

Ozone DV

3 year average of annual 4th highest, daily max 8-hour average O₃

Ozone: Region-wide Design Value Trends

Multi-Jurisdictional Organizations

LADCO and the MJOs are funded primarily by U.S. EPA grants to the states under <u>Section 105</u> of the Clean Air Act.

LADCO Background and Scope

- Formed in 1989 to bring Michigan, Indiana, Illinois, and Wisconsin together to address ozone pollution
 - Ohio joined in 2004; Minnesota joined in 2012
- Technical lead in the region for continental to urban-scale atmospheric modeling: meteorology, emissions, and chemistry-transport
 - LADCO produces decision support information via modeling and monitoring data analyses that our states use for air quality manag
 - ement plans (SIPs)
- LADCO does not provide policy guidance to our membership, only technical guidance and support

LADCO Organization

Governance

Board of Directors

State Air Directors LADCO ED

Planning

Air Directors Group

State Air Directors & Branch Chiefs LADCO ED EPA R5 Air Director

Technical

Training Committee

LADCO Training Coordinator State Training Coordinators

Project Team

State Branch Chiefs & Tech Staff EPA R5 Tech Staff FLM & Tribal Air Program Staff

Technical WGs (July 2019)

Regional Haze, Exceptional Events 2008 O3 NAAQS, Monitoring Network Evaluation, Emissions

What Does LADCO Actually Do?

- Air Quality Modeling
- Air Monitoring
- Data Science
- Air Quality Research
- Training Coordination
- Intra-region
 Communication Platform
- Contract Management
- Outreach and Advocacy

LADCO Executive Office Staff

Zac Adelman Executive Director

Donna Kenski, PhD Data Scientist

Mark Janssen Emissions Director

Tsengel Nergui, PhD Modeler

Catherine Heath Office Manager

What Does LADCO Produce?

- Decision Support Systems and Data
- Modeling Protocols
- Technical Support Documents (TSDs)

Knowledge in our Member States

Modeling Platform

Software and data package of all elements that went into a modeling project

Purpose of Regional Air Quality Modeling

- Air quality models integrate our understanding of individual processes into a coherent system
- Air pollution systems are non-linear
 - Need to establish links between emissions sources and ambient concentrations
- Measurements are sparse
 - Models provide a continuous spatial and temporal view of air quality
- Decision support
 - Platforms for testing the effectiveness and impacts of pollution mitigation policies
- Experimental
 - Identify knowledge gaps, quantify drivers, source-receptor relationships
- Deterministic
 - Randomness/noise is not considered in the solution: consistently reproducible
 - Bottom Up: Link processes together to a solution

Air Monitoring & Data Science

- LADCO staff are experts with ambient monitoring data, and air quality modeling data
- LADCO supports our states through transferring data, analysis products, and modeling capabilities

Statistical Analyses

Cloud Computing

Big Data

Air Quality Research

LADCO technical staff serve as collaborators, technical advisors, and air planning agency stakeholders

Remote Sensing Aerosol Optical Depth vs. Surface Visibility Correlation Warm Season (Apr – Sept) Trends

Current Technical Analyses

- Observational Trends
 - Surface network review and enhancement
 - Updating regional & urban O₃ conceptual models
- Regional Photochemical Modeling
 - 2016 met and chemistry modeling for O₃ and Regional Haze
- Emissions Modeling
 - Inventory Collaborative
 - Analysis/improvement of mobile 45°N sources: onroad, offroad, rail,
- Meteorology Modeling
 - WRF optimization for high ozone conditions
- Exceptional Events
 - Studying smoke impacts on air quality in the region

Current Regulatory Focus

• 2015 O₃ NAAQS

- EPA designations finalized in August 2018
- Marginal status for all violating LADCO monitors
- iSIPs (including "Good Neighbor" SIPs) due October 2018
- Attainment demonstration (NAA SIP) not required for marginal
- Marginal attainment date August 3, 2021 ← 2020 O₃ Season

• 2008 O₃ NAAQS

- Chicago and Sheboygan reclassification from moderate to serious status due to be finalized summer 2019
- NAA SIPs due from IL, IN, WI in Spring 2020
- Serious attainment date July 21, 2021 ← 2020 O₃ Season

Regional Haze

Round 2 SIPs due July 2021

Source Apportionment

- Tag emissions sources (by sector and/or source region)
- Follow the tracers through the model to quantify sourcereceptor relationships
- Chart shows the inventory sectors contributing to ozone at particular surface monitors

MDA8 O_3 (ppbV) (with WATER) inventory sector contributions to DVs₂₀₂₃ at key monitors in the LADCO 2023 simulation

2008 O₃ NAAQS Attainment Modeling

- Chicago and Sheboygan O₃ NAAs reclassified to serious
- Attainment modeling will be done by LADCO to demonstrate how to reach attainment by July 21, 2021 (actually by the $2020 O_3$ season)
- Modeling approach
 - WRF 2016 simulation, configuration based on LMOS and NASA research projects
 - 2016 emissions projected to 2020 using EPA MOVES (mobile) and ERTAC EGU (power sector) emissions
 - On-the-books emissions controls and source apportionment modeling to identify inventory sector/source regions that contribute to regional ozone
- LADCO technical support products (modeling results) to states by Fall 2019

Regional Haze: Visibility Differences

What causes haze?

- Particles in the atmosphere scatter light.
- Natural and anthropogenic sources: wildfires, agriculture, coal combustion contribute to light extinction and visibility impairment.
- Like ozone and PM_{2.5}, meteorology plays a role.

Round II Regional Haze Planning

- Regional Haze committee was reconvened in January 2018
- Members from LADCO states, FLMs, R5, EPA-HQ, tribes
- Goal: develop documentation, analyses, modeling, and inventories to assist states in meeting the July 2021 RH SIP submittal target

Exceptional Events

- States can get regulatory relief from air pollution caused by unusual or naturally occurring air pollution events
- LADCO works with our states to survey ozone season observations for possible exceptional events (EE)

Credit: Airow Tech

 <u>LADCO EE Workgroup</u>: monthly triage analysis reviews daily surface observations and smoke columns from previous month

Sheboygan, WI NAA 2016 EE Screening

Ft. McMurray Fire (~May 20-24)

Ft. McMurray Fire

LADCO's 1-2 Year Plan

- Continue to service our member state air quality planning needs
 - Build collaborations around the region to enhance our capabilities and services
- Modernize our decision support and data systems
 - Cloud-based computing
 - Interactive web-based analysis resources @ www.ladco.org
 - Driving applied research with remote sensing data and cutting-edge modeling technologies
- Enhance the National Air Pollution Training Program
- Continued advocacy for LADCO region on national initiatives

Questions and Contact

Zac Adelman

847-720-7880

adelman@ladco.org

www.ladco.org

