Using Photochemical Models to Assess the Exceptional Event Rule's Q/D Screening Guidance

Matthew J. Alvarado, Benjamin Brown-Steiner, Chantelle R. Lonsdale, and Jennifer D. Hegarty Atmospheric and Environmental Research

> 2018 CMAS Conference UNC-Chapel Hill October 22, 2018

This presentation is based on work supported by the State of Texas through a contract from the Texas Commission on Environmental Quality. The conclusions are the authors' and do not reflect TCEQ policy.

Copyright 2018, Government sponsorship acknowledged.

Wildfire Exceptional Event Demonstrations

- Poor air quality events due to wildfires can be excluded from NAAQS attainment.
- Must demonstrate a *clear, causal relationship* between the wildfire event and the monitor.
- Photochemical models can be used to calculate the O₃ impacts of fires, but they are computationally expensive.
- Thus, there is a need for screening methods to identify likely exceptional events.

Screening Wildfire Impacts of Ozone

- 'Q/D' Metric
 - Q : NO_x and VOC emissions from fire
 - D : Distance of monitor from fire
 - If Q/D > 100 tons/day/km, no photochemical modeling (Tier 2)
- EPA notes that:
 - Q/D alone is not enough to demonstrate O₃ impacts
 - Threshold of 100 tpd/km is a "conservative value"

Is the Q/D metric appropriate for O₃?

- O₃ is a secondary pollutant rapidly produced by the photochemistry of NO_x and VOCs emitted by fires
- The concentration of O₃ increases with distance downwind until plume dilution is greater than chemical production

Investigating the Q/D Metric for Wildfires

- Literature Review
- Simulate two Texas fire events
 - El Paso event from Hog Fire
 - Houston event from Yucatan
- Using three photochemical modeling approaches
 - Lagrangian parcel model (ASP)
 - Lagrangian chemical transport model (STILT-ASP)

Jer

 Eulerian grid model (CAMx, El Paso only)

Literature summary of Q/D versus O₃

Location	<u>Q [tpd]</u>	<u>D [km]</u>	Q/D [tpd/km]	O3 Enhancement	Citation
Wallow	6,000	350	17.1	20	Baker et al. 2016
Flint Hills	28,000	250	112.0	25	Baker et al. 2016
Mexico City	14,000	150	93.3	0	Lei et al., 2013
Western Canada	80,000	1,500	53.3	10	Lindaas et al, 2017
Western US	34,000	1,350	25.2	10	Lindaas et al., 2017
Maryland	1,500	1,700	1.0	14	Dreessen et al., 2016
Western US	70,000	1,100	63.6	14	Gong et al. 2017
Western US	70,000	1,000	70.0	8	Gong et al. 2017
Western US	70,000	500	140.0	16	Gong et al. 2017
Western US	70,000	500	140.0	10	Gong et al. 2017
Western US	70,000	300	233.3	15	Gong et al. 2017
Western US	70,000	150	466.7	13	Gong et al. 2017
Alaska and Canada	100,000	4,000	25.0	50	Morris et al., 2006

NOTES: Alaska and Canada Q estimate very approximate, see Turquety et al. (2007) Baker et al. (2016) D values are from fire centroids and nearest point in Texas

O₃ enhancement not a function of Q/D

VOC NOx Q 2-day Q D Q/D, 1-day Q/D, 2-day [tpd] [tpd/km] [tpd/km] [tpd] [tpd] [tpd] [km] 21-Jun 89 188 0.384 96 0.752 7 250 20-Jun 85 7 92 176 250 0.368 0.704 19-Jun 78 84 195 250 0.336 0.78 6 18-Jun 0.444 0.692 103 8 111 173 250 17-Jun 57 62 94 250 0.248 0.376 5 32 16-Jun 30 2 250 0.128

El Paso Case Study – Hog Fire

HYSPLIT Back-Trajectories for CAMS 12.

🖸 der'

8

Hog Fire Lagrangian Parcel Simulations

- O₃ enhancement increases for first 6 hours after emission (if emitted at 12:00 LST), then decreases, which is not consistent with Q/D
- O₃ enhancement is roughly proportional to initial plume concentrations
 - Initial concentration controlled partly by emissions (Q), but also mixing height, fire size, wind speed, etc.

Hog Fire Lagrangian Parcel Simulations

- O₃ enhancement in first 24 hours depends on what time of day the parcel is emitted, but enhancements all very similar after 24 hours!
- Consistent with review of Jaffe and Wigdar (2012), which suggested similar values for $\Delta O_3 / \Delta CO$ after 1-2 days aging.

El Paso Lagrangian CTM Simulations

- Only small fraction of the 500 back-trajectories encountered the fires.
- O₃ enhancement is produced near the fire source and stays constant with distance after that.
- "Straight line" distance a poor proxy for trajectory distance or parcel age.

El Paso CAMx simulations (Performed by Ramboll, provided by TCEQ)

MDA8 O_3 impact increases with distance from fire up to ~225 km. Inconsistent with Q/D, but consistent with Lagrangian parcel simulations.

Houston Case Study – Yucatan Fires

- Two events identified by Prof. Yuxuan Wang of the University of Houston.
 - April 26-27, 2011
 - May 1-2, 2013

	Q	D	Q/D
	[tpd]	[km]	[tpd/km]
26-Apr-11	158,800	1,000	159
27-Apr-11	265,000	1,000	265
30-Apr-13	140,000	1,000	140
1-May-13	157,000	1,000	157
2-May-13	244,000	1,000	244

Houston Lagrangian Parcel Simulations

- Yucatan plume is large, so dilution is very slow
- O₃ increases for at least 2 days
- O₃ enhancement proportional to initial plume concentrations, consistent with Q/D if all else is equal (e.g., PBL height)

- Tropical forest, temperate forest, and grassland emission factors all have similar changes in O₃ enhancement with time after emission (and thus distance)
- But boreal forests make much less O₃ for same Q (NO_x+VOCs) suggesting they need a different Q/D threshold.

Houston Lagrangian CTM Simulations

- About a third of the 500 back-trajectories encountered the fires.
- O₃ enhancement is produced near the fire source, increases for some distance downwind, then decreases.

Alternative Screening Metrics

- Use Jaffe and Wigder (2012) review as the basis of a screening metric.
 - $-\Delta O_3/\Delta CO = 0.2 \pm 0.1$ after 1-2 days (-0.1 to 0.9)
 - Boreal forest lower, $\Delta O_3/\Delta CO = 0.005 \pm 0.019$ (Alvarado et al., 2010)
- Use STILT or HYSPLIT back-trajectories and fire CO emission inventories to estimate ∆CO.

– Could use $\Delta O_3 / \Delta NO_y$ or $\Delta O_3 / (\Delta NO_y + VOCs)$ instead

Example: Δ CO is ~20 ppbv from STILT, so we expect **2-6 ppbv O₃** from the fires. Full STILT-ASP simulation gave 1.8 ppbv, but this may be an underestimate due uncertain organic nitrate chemistry (Lonsdale et al., 2017).

Conclusions

- The Q/D metric is not consistent with the literature or the photochemical modeling performed in this study.
 - The Lagrangian parcel (ASP) simulations show O_3 increasing with distance downwind.
 - The O₃ was proportional to Q if other parameters (e.g., mixing height, fire area) are held constant.
 - O_3 formation from boreal forest fires is lower than other fuel types.
 - The meandering STILT-ASP trajectories suggest straight-line distance is a poor proxy for parcel age or dilution rate.
 - CAMx-simulated fire impacts on MDA8 O₃ for the EI Paso event increase with distance within 200 km of the fire.
- We recommend an approach that uses literature values of ratios of $\Delta O_3 / \Delta CO$ or $\Delta O_3 / \Delta NO_y$ with STILT and HYSPLIT back-trajectories.