Introduction to Air Quality Modeling

Zac Adelman
LADCO Executive Director

December 2018

These materials by LADCO are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Course Objectives

• Present key concepts of regional air quality modeling
• Provide audience with a background on the design, implementation, and operation of regional models
• Understand the strengths and limitations of the models
• Gain familiarity with the types analyses used to evaluate and present regional air quality modeling
• Present and define common modeling jargon
 • Key terms will be highlighted throughout the webinar
Charge Questions

Questions to consider during this webinar

• How is regional air quality modeling used at you organization?
• What types of knowledge would be useful to you when interacting with others about modeling?
• What is your role and your organization’s role in the air quality modeling process at LADCO?
• What interactions do you envision between yourself and LADCO with regard to air quality modeling?
Webinar Outline

• Modeling processes
• Purpose of regional air quality modeling
• Conceptual approach and the continuity equation
• Model components
• Data flows
• Data and file formats
• Accessing data and software
• Operational details
• Model analysis and evaluation
• Limitations
• Future directions

Interchangeable Terms

Regional Air Quality Model = Photochemical Grid Model (PGM) = Chemistry-transport Model (CTM) = Eulerian Model
PGM Processes

Source: www.epa.gov/cmaq
Purpose of Photochemical Grid Modeling

- Air quality models integrate our understanding of individual processes into a coherent system
- Air pollution systems are non-linear
 - Need to establish links between emissions sources and ambient concentrations
- Measurements are sparse
 - Models provide a continuous spatial and temporal view of air quality
- Decision support
 - Platforms for testing the effectiveness and impacts of pollution mitigation policies
- Experimental
 - Identify knowledge gaps, quantify drivers, source-receptor relationships
- Deterministic
 - Randomness/noise is not considered in the solution: consistently reproducible
 - Bottom Up: Link processes together to a solution
Conceptual approach to PGMs

Extend the 2-D box model to three dimensions

$u_1 C_1 \quad \Delta x \quad \Delta y \quad u_2 C_2$

C_i

$u = \text{wind vector}$

$C_i = \text{concentration of species } i$

\[\Delta C \Delta x \Delta y \Delta z = u_1 C_1 \Delta y \Delta z \Delta t - u_2 C_2 \Delta y \Delta z \Delta t \]

Divide by Δt and volume: $\frac{\partial C}{\partial t} = - \frac{\partial (uC)}{\partial x}$
Expanded Continuity Equation

Expanded Continuity Equation Derivation:

Expand to flux three dimensions:

$$\frac{\partial C}{\partial t} = -\frac{\partial(uC)}{\partial x} - \frac{\partial(vC)}{\partial y} - \frac{\partial(wC)}{\partial z}$$

$$= -\nabla \cdot (vC)$$ \hspace{1cm} (flux divergence form)

Add additional production and loss terms:

$$\frac{\partial C}{\partial t} + \nabla \cdot (vC) = D\nabla^2 C + R + E - S$$

$u, v, w = \text{wind vectors}$

$E = \text{emissions}$

$S = \text{loss processes}$

$R_i = \text{Chemical formation of species } i$

$D = \text{Molecular diffusion coefficient}$
Overlay 3-D boxes on a grid

- Grid is fixed relative to the map coordinate
- All locations at all times
- Materials move through all cell faces
Full Continuity Equations

• **Gas Continuity Equation**

\[
\frac{\partial C}{\partial t} + \nabla \cdot (vC) = D \nabla^2 C + R_{\text{chem}} + R_{\text{emis}} + R_{\text{depos}} + R_{\text{wash}} + R_{\text{nuc}} + R_{\text{cond/evap}} + R_{\text{dp/subl}} + R_{\text{ds/evap}} + R_{\text{hetero}}
\]

• **Particle Continuity Equation (number)**

\[
\frac{\partial n}{\partial t} + \nabla \cdot (vn) = D \nabla^2 n + R_{\text{emis}} + R_{\text{depos}} + R_{\text{sed}} + R_{\text{nuc}} + R_{\text{wash}} + R_{\text{coag}}
\]

• **Particle Continuity Equation (volume concentration)**

\[
\frac{\partial V}{\partial t} + \nabla \cdot (vV) = D \nabla^2 V + R_{\text{emis}} + R_{\text{depos}} + R_{\text{sed}} + R_{\text{nuc}} + R_{\text{wash}} + R_{\text{coag}} + R_{\text{cond/evap}} + R_{\text{dp/subl}} + R_{\text{ds/evap}} + R_{\text{reg}} + R_{\text{qg}} + R_{\text{hetero}}
\]

where,

\(C\) = pollutant concentration of species
\(R_i\) = loss/production by process \(i\)
Processes: \(\text{chem}=\) chemical production/loss, \(\text{hr}=\) heterogeneous reactions, \(\text{nuc}=\) nucleation,
\(\text{c/ev}=\) condensation/evaporation, \(\text{dp/s}=\) depositional growth/sublimation,
\(\text{ds/e}=\) dissolution/evaporation, wash=washout, dep=deposition, emis=emissions
PGM Components

- Met Modeling
 - 2-D/3-D Met Files
- Global Modeling
 - IC Input File
 - BC Input File
- Emissions Modeling
 - Model Ready Emissions
- PGM
 - Hourly Concentrations
 - Cumulative Wet Dep
 - Cumulative Dry Dep
 - Visibility Metrics
 - Diagnostic Outputs

Nested Simulation
The Weather Research Forecast (WRF) model is a numerical weather prediction model.

Meteorology dictates the temporal and spatial extent of a PGM simulation.

Dynamical Downscaling:
- WRF uses global General Circulation Model (GCM) data that has been fused with observations, aka reanalysis, to simulate weather.

Key Meteorology Modeling Processes Related to Air Pollution:
- Boundary Layer Dynamics: motions of the atmosphere near the earth’s surface.
- Radiation: flux and transfer of solar energy.
- Microphysics: cloud formation, precipitation, and impacts on radiation/heating.
- Land-Surface Modeling (LSM): model of surface coverage, impacts heat and radiation exchange, turbulence, and deposition.
- Four Dimensional Data Assimilation (FDDA): aka “nudging” is the processes of assimilating observations to add value to the simulation.
PGM Components: Emissions

- The Sparse Matrix Operator Kernel Emissions (SMOKE) processor converts inventory data to PGM-ready emissions files

![Diagram showing the process flow from NEI to PGM Emissions]
PGM Components: IC/BC

• Initial Conditions (IC): concentrations at the first time step of the model simulation
 • Decay exponentially with time as the model simulation proceeds
• Boundary Conditions (BC): concentrations along the outer boundaries of the modeling domain
 • Have a continuous impact on the model solution, particularly from the upwind boundary

• Key Concepts
 • Model Spin Up: amount of time required to minimize the influence of initial conditions on a model simulation; applies to met and PGM, convention is 12-24 hours for met and 10 days for PGM
 • Nesting: placement of progressively smaller and finer grid resolution modeling domains within an outer parent domain
 • Downscaling: transfer of information from a course global scale PGM to a finer scale regional PGM; can also apply for meteorology data (global→regional)
What Does the PGM Do?

PRIMARY PROCESSES
- Transport and Dynamics
 - Advection and diffusion algorithms simulate horizontal and vertical transport
- Photochemistry
 - Gas phase chemistry and photolysis, primarily for simulating ozone
- Aerosol Chemistry
 - Aerosol thermodynamics, chemistry, secondary formation, and optical properties
- Heterogenous Chemistry
 - Phase changes and aqueous chemistry
- Deposition
 - Dry and wet deposition of gases and particles

SECONDARY PROCESSES
- **In-line** Processes
 - Processes that were at some point done independent of the PGM
 - Emissions and photolysis rate calculations can be done in the PGM simulation
 - Can include meteorology-chemistry coupling
- **Probing Tools**
 - Algorithms to track/trace individual components of the PGM solution
 - Source apportionment
 - Process analysis
- **Diagnostic Tools**
 - Output extra variables on the details of the model equations
A Note on Gas-Phase Chemistry

• The majority of the PGM solution time (>75%) goes to solving the chemistry equations

• Gas phase chemistry uses parameterized ("lumped") mechanisms to represent similarly reacting compounds
 • Inorganic reactions (i.e., no carbon involved) are the same across most lumped mechanisms
 • Carbon Bond is a structural parameterization that is based on the number bonds between carbons
 • SAPRC is a molecular parameterization that uses surrogates of molecular classes (i.e., C2-C6 paraffins) to reduce the solution

• Lumped mechanisms reduce thousands of compounds and reactions to mechanisms with a few dozen compounds and 100-200 reactions

<table>
<thead>
<tr>
<th>Carbon Bond Lumping</th>
<th>Propane (3C): C-C-C is 2 PAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR = single carbon bond.</td>
<td>OLE = double carbon bond.</td>
</tr>
<tr>
<td>Pentene (5C): C-C-C=C is 3 PAR + 1 OLE</td>
<td></td>
</tr>
</tbody>
</table>
PGM Data Flows

INPUT
- Meteorology
- Emissions
- Initial Conditions
- Boundary Conditions
- Photolysis Rate Tables
- Landuse/Landcover Data
- Ozone and Aerosol Columns

OUTPUT
- Hourly Concentrations
- Hourly Wet/Dry Deposition
- Reconstructed Visibility
- Initialization/Restart File
- Source Apportionment
- Diagnostic Files
- Process Analysis
PGM Data Flows: CAMx
Data and File Formats

What You Think Modelers Do

What Modelers Actually Do

All models use prescribed formats for input/output data to facilitate data processing and quality control

- No two models are the same, leading to complexities in exchanging data and the need for data processors/ translators
Data and File Formats

- **ASCII/Text**: CSV or fixed column formats, typically used for inventory data and static look-up tables

- **Binary**: non-text, computer readable files; some are self-describing with headers/metadata, some are just a loosely organized block of data

- **NetCDF**: Network Common Data Form
 - General binary format of self-describing data arrays; portable across computers/operating systems
 - Many different variations of netCDF: WRF, I/O API (CMAQ), CF-compliant

- **HDF**: Hierarchical Data Format
 - Similarities to netCDF, designed for large amounts of data

- **GRIB**
 - Compressed, self-describing binary format used by meteorology community

- **UAM**
 - CAMx, legacy Urban Airshed Model binary format
Accessing PGM Data and Software

• All of the regional modeling and analysis software is open-source and accessible

• All PGMs and components are written in Fortran and tested on Linux systems
 • Fortran remains the best engineering language for complex math and multi-processor computing
 • Linux minimizes operating system overhead, provides better tools for accessing memory and processors

• Common Distribution Approaches
 • **Tarballs**: archives of data, source code, scripts
 • **Git**: open source repository of source code and scripts (https://github.com), git command line interface for downloading/updating codes
Operational Details

- All PGMs and WRF need to be compiled before use
 - Download source code, not executables
 - Requires a **compiler**: a software tool that builds source code into programs that can be run at Linux command line
 - **Upside**: programs can be optimized for a particular hardware configuration
 - **Downside**: requires > novice Linux skills; if things go wrong it can be difficult to troubleshoot if you don’t know the programming language

- Implementation
 - **Interpreted Language** (e.g., Python, R, NCL): access functionality of the language without needing to compile anything; typically for analysis/processing
 - **Compiled Language** (e.g, Fortran, C, C++): implementation requires building executables before accessing the language functions
 - **Libraries**: provide application programming interfaces (APIs) to connect/access file formats and programming languages
• What’s a modeling script vs a program?
 • The actual modeling software is a compiled program (executable, binary)
 • Fortran programs require variables (i.e., input/output file names, configuration settings) to be set when they are executed
 • Scripts are text files, typically written in a shell language related to a Linux user environment (bash, C-shell) that set variables can call an executable.
 • Example C-shell script:

```csh
#!/bin/csh

setenv INPUT /home/camx/input.txt
setenv OUTPUT /home/camx/output.txt
set PROGRAM = /apps/CAMx_v5.1/camx.exe

$PROGRAM
```
Operational Details

Typical Workflows

Meteorology
- Define time periods/domains
- Modeling Protocol
- Download reanalysis and observational data
- Compile and test WRF
- Develop operational scripts
- Shakeout modeling
- Evaluation
- Production modeling
- Evaluation
- MPE Report
- Post-process for PGM

Emissions
- Modeling Protocol
- Download emissions data
- Generate spatial surrogates for new domains
- Download SMOKE Platform
- Develop operational scripts
- Generate biogenic, seasalt, dust emissions
- Shakeout modeling
- Evaluation
- Production Modeling
- Evaluation

PGM
- Modeling Protocol
- Download/compile PGM
- Test PGM installation
- Develop operational scripts
- Shakeout modeling
- Evaluation
- Production modeling
- Post processing
- Evaluation
- MPE Report

Boundary Conditions
- Request/download global modeling data
- Downscale to PGM inputs
- Evaluation?
Model Analysis Techniques

• Air quality models output hourly, 3-D (x, y, z) concentrations of gas and aerosol species

• Analysis begins with concatenating/extracting variables from hundreds of files into a few manageable datasets
 • Example: Daily maximum layer 1 O$_3$, NOx (NO+NO$_2$+HONO), and total PM$_{2.5}$ (SO$_4$ + NO$_3$ + NH$_4$ + EC + OC + PM$_{\text{Other}}$)

• Common Analyses
 • Averaging, daily maximums
 • Pairing observations with model grid cells
 • Visualization
 • Bivariate statistics (error, bias, correlations)

• A robust set of tools are available for post-processing/analysis
 • Scripts for driving interpreted languages (R, NCL, NCO, Python)
 • Visualization software: VERDI, IDV, R, NCL, Panoply
 • Analysis packages: AMET, I/O API Tools, Metstat

www.ladco.org • Lake Michigan Air Directors Consortium • 9501 West Devon Avenue, Suite 701 Rosemont, IL 60018
Model Performance Evaluation

- **MPE** = Model Performance Evaluation
- Question why a model is doing what it is doing
- What are the inherent uncertainties and how do they impact the model results?

Evaluation Techniques
- Comparisons against observations/measurements
- Sanity checks
- Looking for known trends (diurnal/seasonal patterns, chemical signatures, source signatures)

Comparisons to measurements
- Pair in space and time
- Compare predicted vs observed maximums (means)
- Paired in space but not time
- Statistical metrics
When has a model demonstrated acceptable performance

- Not a simple question
 - A pollutant may consist of many components (e.g., PM consists of sulfate, nitrate, ammonium, organic carbon, elemental carbon, soils, coarse mass, etc.)
 - The PGM may simulate some components well, others poorly
 - Right answer for the wrong reasons?
- What model performance metrics should be used to facilitate inter-comparisons between applications and models?
- What metrics should regulators use for assessing attainment?
Model Performance

Model performance goals

• What level of accuracy is considered to be close to the best a model can be expected to achieve?
 o Regulatory vs. scientific applications

• Different performance goal and criteria developed for:
 o Different components of each pollutant
 o Different seasons of the year
 o Different parts of the country
 o Urban vs. rural sites
 o Complex vs. simple terrain
 o Clean vs. polluted days
Model Performance

Performance Goals and Criteria

- Not a pass/fail metric, used to help interpret model skill
- Based on literature reviews and past experience

<table>
<thead>
<tr>
<th>Fractional Bias</th>
<th>Fractional Error</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq \pm 15%)</td>
<td>(\leq 35%)</td>
<td>(O_3) model performance goal that would be considered very good model performance for PM species</td>
</tr>
<tr>
<td>(\leq \pm 30%)</td>
<td>(\leq 50%)</td>
<td>PM model performance Goal, considered good PM performance</td>
</tr>
<tr>
<td>(\leq \pm 15%)</td>
<td>(\leq 35%)</td>
<td>PM model performance Criteria, considered average PM performance. Exceeding this level of performance for PM species with significant mass may be cause for concern.</td>
</tr>
</tbody>
</table>
MPE Challenges

- Modeling scales are growing both spatially and temporally
 - Datasets becoming larger: more difficult to manage/move around
 - Need to process and digest voluminous amount of information

- Heterogeneous nature of observational datasets
 - Vary by network, by quality, by format, by frequency

- Measurement or model artifacts
 - What is modeled is not always measured
 - Need adjustments before comparisons

- Problem of incommensurability
 - Comparing point measurement with volume average
Operational Evaluation

• Mostly quantitative
• Compute suite of statistical measures of performance
 • Peak Prediction Accuracy, bias metrics (MB, MNB, NMB, FB), error metrics (RMSE, FE, GE, MGE, NMGE), etc.
 • “Goodness-of-fit” measures (based on correlation coefficients and their variations)
 • Various temporal scales
• Time-series analyses
 • Hourly, weekly, monthly
• Grid (tile) plots
• Scatter plots
• Soccer Plots
Spatial Plots

Statistical spatial plots: MPE stats at monitors

Tileplots: gridded model output concentrations

May 23 – June 23, 2017 O3 Normalized Mean Bias

July 2011 Monthly Max O3
Timeseries Analysis

May – June 2017
Daily Max O₃ at Kohler Andrae, WI

CAMx Bias in Daily Max O₃
2001 Monthly Mean PM$_{2.5}$ at STN and IMPROVE monitors in the East and West U.S.

Quadrant (Skill) Plot of 2011 Summer Season MDA8 O$_3$ @ New Mexico AQS Sites
Soccer Plots

Error vs Bias Plot
Dashed lines indicate model performance goals and criteria
The closer to the origin, the better the model performance

2008 Monthly Average PM2.5 at IMPROVE sites in Colorado
• Period averaged PM species at a site (or multiple sites) in a network
• Compares observations and model
Diagnostic Evaluation

• Qualitative and Quantitative
• Compute pollutant ratios
 • Metrics different for each problem being diagnosed / studied
 • $O_3/NO_z, H_2O_2/HNO_3$ for NO_x versus VOC limitation
 • NO_z/NO_y for chemical aging
 • PM species ratios such as NH_3/NH_x, $NO_3/(total$ nitrate) for gas-particle partitioning, NH_4/SO_4, NH_4/NO_3, etc.
• Innovative Techniques
 • Principal Component Analyses
 • Process Analyses
 • Tagged species tracking
 • Source Apportionment: CAMx OSAT & PSAT
Sensitivity Analysis

• How does the model respond to a change in an independent parameter?

• In air quality modeling sensitivity analysis is used to:
 • Quantify the atmospheric response to an emissions control
 • Determine the uncertainty in the response
 • Perform inverse modeling and data assimilation

• Methods
 • Brute Force Method (BFM)
 • Decoupled Direct Method (DDM)
 • Green’s Function Method
 • Automatic Differentiation in Fortran (ADIFOR)
 • Adjoint (inverse model) Method
Brute Force Method (BFM)

• Vary the input parameters one-by-one in separate model simulations and evaluate the change in the predicted concentrations

• Pros
 • Easy to apply
 • One additional run for each sensitivity parameter
 • Straightforward to interpret the results

• Cons
 • Noisy for small perturbations
 • Unrealistic for large perturbations - computationally expensive
Decoupled Direct Method (DDM)

- Sensitivity equations are derived by taking the derivative of the CTM model concentration equations relative to a given sensitivity parameter.
- These equations are integrated decoupled from concentrations using the same numerical operators as the CTM - easy to implement.

Pros
- Computational and space efficiency
- Accurate, avoids numerical error for small perturbations (local slope)
- Can examine non-linearity with HDDM

Cons
- Complex to implement in a model
 - Aqueous & aerosol chemistry especially difficult
 - Must update each time PGM model changes
- Inaccurate for large perturbations
 - This can be addressed by using high-order coefficients
Brute Force vs DDM

1st order and 2nd order DDM conserve the model computations and allow investigating the spectrum of emissions changes from A to B.

Brute Force doesn’t capture the concentration path from A to B, and artificially perturbs the model.

Source: Cohan, 2005
Ozone Source Apportionment

• **Tagged Species**: Chemically active tracers follow ozone precursors through the chemistry mechanism
 • Tracers are spectators to the model chemistry and track the chemical conditions (NOx or VOC limited) under which O₃ is formed

• **CAMx Ozone Source Apportionment Tool (OSAT)**
 • Attributes O₃ formation to biogenic or anthropogenic VOC without distinguishing the “controllable” nature of the emissions

• **CAMx Anthropogenic Culpability Assessment (APCA)**
 • Considers ”controllable” emissions by attributing O₃ formation to anthropogenic precursors
 • Example: in VOC-limited conditions where biogenic VOC and anthropogenic NOx react to form O₃, OSAT would attribute the O₃ to biogenic sources; APCA attributes the O₃ to the anthropogenic NOx

Simplified Ozone Chemistry Mechanism

\[
\begin{align*}
\text{VOC} \cdot + \text{NO} & \rightarrow \text{NO}_2 + \text{VOC} \cdot \\
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 \\
\text{NO}_2 + \text{hv} & \rightarrow \text{NO} + \text{O} \\
\text{O} + \text{O}_2 + \text{M} & \rightarrow \text{O}_3 + \text{M}
\end{align*}
\]
Source Apportionment
APCA Example

Source Region Tags

Inventory Sector Tags
Limitations of PGMs

- Quantifying uncertainty is difficult because of the modularity of the PGM platforms
 - How do you estimate uncertainty in met and then propagate to the PGM?
- Abstraction/Distortion/Deletion
 - Parameterization is needed to balance accuracy with computing economy
- Algorithms and evaluation focus on conditions around the mean
 - Air quality planning is concerned with outliers/peaks
- Model algorithms are limited at fine spatial and temporal scales
 - WRF is a mesoscale model, PGM’s are regional models; localized pollution issues challenge the capabilities of the PGM system
- Lag between research and implementation of science
- We don’t know what we don’t know
 - Organic aerosol, gas-phase aromatic, heterogeneous chemistry are evolving
Future Directions

• Alternative model grid structures
• Adaptive grids and time scales
• Probabilistic applications
• One-Atmosphere+: Expand the representation/integration of all atmospheric processes
• Meteorology ↔ Chemistry: expand two-way coupled modeling to planning
• Earth-System Modeling: Expand the two-way coupled meteorology-chemistry model to all media (soil, water)
• Data assimilation: Improve PGM skill with nudging to different data platforms (in-situ, remote sensing, sensors)
• Artificial Intelligence: User AI and neural networks to optimize model solutions to novel problems
Final Note

• PGMs are the best platform that we have for integrating all of our knowledge about air pollution
 • They do amazingly well given that they parameterize a system with a lot of chaos and uncertainty

• PGMs are decision support tools
 • Understand their strengths and limitations
 • They aren’t designed to provide THE answer, just an answer, or a set of answers

• To Learn More
 • EPA Modeling Guidance for Demonstrating Air Quality Goals (Nov 2018)
 • CAMx and CMAQ User’s Guides
 • LADCO modeling protocols and MPE reports
 • Dive In! Download model code and compile, run a test case