Introduction to Air Quality Modeling

December 2018

Course Objectives

- Present key concepts of regional air quality modeling
- Provide audience with a background on the design, implementation, and operation of regional models
- Understand the strengths and limitations of the models
- Gain familiarity with the types analyses used to evaluate and present regional air quality modeling
- Present and define common modeling jargon
 - Key terms will be <u>highlighted</u> throughout the webinar

Charge Questions

Questions to consider during this webinar

- How is regional air quality modeling used at you organization?
- What types of knowledge would be useful to you when interacting with others about modeling?
- What is your role and your organization's role in the air quality modeling process at LADCO?
- What interactions do you envision between yourself and LADCO with regard to air quality modeling?

Webinar Outline

- Modeling processes
- Purpose of regional air quality modeling
- Conceptual approach and the continuity equation
- Model components
- Data flows
- Data and file formats
- Accessing data and software
- Operational details
- Model analysis and evaluation
- Limitations
- Future directions

Interchangeable Terms

Regional Air Quality Model =
Photochemical Grid Model (PGM) =
Chemistry-transport Model (CTM) =
Eulerian Model

PGM Processes

Purpose of Photochemical Grid Modeling

- Air quality models integrate our understanding of individual processes into a coherent system
- Air pollution systems are non-linear
 - Need to establish links between emissions sources and ambient concentrations
- Measurements are sparse
 - Models provide a continuous spatial and temporal view of air quality
- Decision support
 - Platforms for testing the effectiveness and impacts of pollution mitigation policies
- Experimental
 - Identify knowledge gaps, quantify drivers, source-receptor relationships
- Deterministic
 - Randomness/noise is not considered in the solution: consistently reproducible
 - Bottom Up: Link processes together to a solution

Conceptual approach to PGMs

Extend the 2-D box model to three dimensions

u = wind vector

 C_i = concentration of species i

Basic Continuity Equation (flux in 1 direction):

 $\Delta C \Delta x \Delta y \Delta z = u_1 C_1 \Delta y \Delta z \Delta t - u_2 C_2 \Delta y \Delta z \Delta t$

Divide by Δt and volume: $\partial C/\partial t = -\partial (uC)/\partial x$

Expanded Continuity Equation

u,v,w = wind vectors

E = emissions

S = loss processes

 R_i = Chemical formation of species i

D = Molecular diffusion coefficient

Expanded Continuity Equation Derivation:

Expand to flux three dimensions:

$$\partial C/\partial t = -\partial(uC)/\partial x - \partial(vC)/\partial y - \partial(wC)/\partial z$$

= -
$$\nabla \cdot (\nu C)$$
 (flux divergence form)

Add additional production and loss terms:

$$\partial C/\partial t + \nabla \cdot (vC) = D\nabla^2 C + R + E - S$$

Overlay 3-D boxes on a grid

Full Continuity Equations

Gas Continuity Equation

$$\frac{\partial C}{\partial t} + \nabla \cdot (vC) = D \nabla^2 C + R_{chemg} + R_{emisg} + R_{depg} + R_{washg}$$

$$+ R_{nucg} + R_{c/eg} + R_{dp/sg} + R_{ds/eg} + R_{hrg}$$

Particle Continuity Equation (number)

$$\partial n/\partial t + \nabla \cdot (vn) = D\nabla^2 n + R_{emisn} + R_{depn} + R_{sedn} + R_{nucn} + R_{washn} + R_{coagn}$$

Particle Continuity Equation (volume concentration)

where.

C = pollutant concentration of species

 R_i = loss/production by process i

Processes: chem=chemical production/loss, hr=heterogeneous reactions, nuc=nucleation, c/ev=condensation/evaporation, dp/s=depositional growth/sublimation, ds/e=dissolution/evaporation, wash=washout, dep=deposition, emis=emissions

PGM Components

PGM Components: Meteorology

- The Weather Research Forecast (WRF) model is a numerical weather prediction model
- Meteorology dictates the temporal and spatial extent of a PGM simulation
- **Dynamical Downscaling**
 - WRF uses global General Circulation Model (GCM)
 data that has been fused with observations,
 aka reanalysis, to simulate weather

- Key Meteorology Modeling Processes Related to Air Pollution
 - Boundary Layer Dynamics: motions of the atmosphere near the earth's surface
 - Radiation: flux and transfer of solar energy
 - Microphysics: cloud formation, precipitation, and impacts on radiation/heating
 - <u>Land-Surface Modeling (LSM)</u>: model of surface coverage, impacts heat and radiation exchange, turbulence, and deposition
 - Four Dimensional Data Assimilation (FDDA): aka "nudging" is the processes of assimilating observations to add value to the simulation

PGM Components: Emissions

 The Sparse Matrix Operator Kernel Emissions (SMOKE) processor converts inventory data to PGM-ready emissions files

PGM Components: IC/BC

- Initial Conditions (IC): concentrations at the first time step of the model simulation
 - Decay exponentially with time as the model simulation proceeds
- Boundary Conditions (BC): concentrations along the outer boundaries of the modeling domain
 - Have a continuous impact on the model solution, particularly from the upwind boundary
- Key Concepts
 - Model Spin Up: amount of time required to minimize the influence of initial conditions on a model simulation; applies to met and PGM, convention is 12-24 hours for met and 10 days for PGM
 - <u>Nesting</u>: placement of progressively smaller and finer grid resolution modeling domains within an outer parent domain
 - <u>Downscaling</u>: transfer of information from a course global scale PGM to a finer scale regional PGM; can also apply for meteorology data (global → regional)

What Does the PGM Do?

PRIMARY PROCESSES

Transport and Dynamics

 Advection and diffusion algorithms simulate horizontal and vertical transport

Photochemistry

 Gas phase chemistry and photolysis, primarily for simulating ozone

Aerosol Chemistry

 Aerosol thermodynamics, chemistry, secondary formation, and optical properties

Heterogenous Chemistry

Phase changes and aqueous chemistry

Deposition

Dry and wet deposition of gases and particles

SECONDARY PROCESSES

• In-line Processes

- Processes that were at some point done independent of the PGM
- Emissions and photolysis rate calculations can be done in the PGM simulation
- Can include meteorology-chemistry coupling

Probing Tools

- Algorithms to track/trace individual components of the PGM solution
- Source apportionment
- Process analysis

Diagnostic Tools

 Output extra variables on the details of the model equations

A Note on Gas-Phase Chemistry

- The majority of the PGM solution time (>75%) goes to solving the chemistry equations
- Gas phase chemistry uses parameterized ("lumped") mechanisms to represent similarly reacting compounds
 - Inorganic reactions (i.e., no carbon involved) are the same across most lumped mechanisms
 - Carbon Bond is a structural parameterization that is based on the number bonds between carbons
 - SAPRC is a molecular parameterization that uses surrogates of molecular classes (i.e., C2-C6 paraffins) to reduce the solution
- Lumped mechanisms reduce thousands of compounds and reactions to mechanisms with a few dozen compounds and 100-200 reactions

Carbon Bond Lumping

PAR = single carbon bond. Propane (3C): C-C-C is 2 PAR

OLE = double carbon bond. Pentene (5C): C-C-C-C is 3 PAR + 1 OLE

PGM Data Flows

INPUT

- Meteorology
- Emissions
- Initial Conditions
- Boundary Conditions
- Photolysis Rate Tables
- Landuse/Landcover
 Data
- Ozone and Aerosol Columns

<u>OUTPUT</u>

- Hourly Concentrations
- Hourly Wet/Dry Deposition
- Reconstructed Visibility
- Initialization/Restart File
- Source Apportionment
- Diagnostic Files
- Process Analysis

PGM Data Flows: CAMx

Data and File Formats

All models use prescribed formats for input/output data to facilitate data processing and quality control

 No two models are the same, leading to complexities in exchanging data and the need for data processors/translators

Data and File Formats

- ASCII/Text: CSV or fixed column formats, typically used for inventory data and static look-up tables
- **Binary:** non-text, computer readable files; some are self-describing with headers/metadata, some are just a loosely organized block of data
- NetCDF: Network Common Data Form
 - General binary format of self-describing data arrays; portable across computers/operating systems
 - Many different variations of netCDF: WRF, I/O API (CMAQ), CF-compliant
- HDF: Hierarchical Data Format
 - Similarities to netCDF, designed for large amounts of data
- GRIB
 - Compressed, self-describing binary format used by meteorology community
- UAM
 - CAMx, legacy Urban Airshed Model binary format

Accessing PGM Data and Software

- All of the regional modeling and analysis software is open-source and accessible
- All PGMs and components are written in Fortran and tested on Linux systems
 - Fortran remains the best engineering language for complex math and multiprocessor computing
 - Linux minimizes operating system overhead, provides better tools for accessing memory and processors
- Common Distribution Approaches
 - <u>Tarballs</u>: archives of data, source code, scripts
 - <u>Git</u>: open source repository of source code and scripts (https://github.com), git command line interface for downloading/updating codes

Operational Details

All PGMs and WRF need to be compiled before use

- Download source code, not executables
- Requires a <u>compiler</u>: a software tool that builds source code into programs that can be run at Linux command line
 - <u>Upside</u>: programs can be optimized for a particular hardware configuration
 - <u>Downside</u>: requires > novice Linux skills; if things go wrong it can be difficult to troubleshoot if you don't know the programming language

Implementation

- <u>Interpreted Language</u> (e.g., Python, R, NCL): access functionality of the language without needing to compile anything; typically for analysis/processing
- <u>Compiled Language</u> (e.g, Fortran, C, C++): implementation requires building executables before accessing the language functions
- <u>Libraries</u>: provide application programming interfaces (APIs) to connect/access file formats and programming languages

Operational Details

- What's a modeling script vs a program?
 - The actual modeling software is a compiled program (executable, binary)
 - Fortran programs require variables (i.e., input/output file names, configuration settings) to be set when they are executed
 - Scripts are text files, typically written in a shell language related to a Linux user environment (bash, C-shell) that set variables can call an executable.
 - Example C-shell script:

```
#/bin/csh
setenv INPUT /home/camx/input.txt
setenv OUTPUT /home/camx/output.txt
set PROGRAM = /apps/CAMx_v5.1/camx.exe
$PROGRAM
```

Operational Details Typical Workflows

Meteorology

- Define time periods/domains
- Modeling Protocol
- Download reanalysis and observational data
- · Compile and test WRF
- Develop operational scripts
- Shakeout modeling
- Evaluation
- Production modeling
- Evaluation
- MPE Report
- Post-process for PGM

Boundary Conditions Nested Simulation Meteorology Emissions Inital Conditions Www.ladco.org * La

Emissions

- Modeling Protocol
- Download emissions data
- Generate spatial surrogates for new domains
- Download SMOKE Platform
- Develop operational scripts
- Generate biogenic, seasalt, dust emissions
- Shakeout modeling
- Evaluation
- Production Modeling
- Evaluation

PGM

- Modeling Protocol
- Download/compile PGM
- Test PGM installation
- Develop operational scripts
- Shakeout modeling
- Evaluation
- Production modeling
- Post processing
- Evaluation
- MPE Report

Boundary Conditions

- Request/download global modeling data
- Downscale to PGM inputs
- Evaluation?

Model Analysis Techniques

- Air quality models output hourly, 3-D (x,y,z) concentrations of gas and aerosol species
- Analysis begins with concatenating/extracting variables from hundreds of files into a few manageable datasets
 - Example: Daily maximum layer 1 O_3 , NOx (NO+NO₂+HONO), and total PM_{2.5} (SO₄ + NO₃ + NH₄ + EC + OC + PM_{Other})
- Common Analyses
 - Averaging, daily maximums
 - Pairing observations with model grid cells
 - Visualization
 - Bivariate statistics (error, bias, correlations)
- A robust set of tools are available for post-processing/analysis
 - Scripts for driving interpreted languages (R, NCL, NCO, Python)
 - Visualization software: VERDI, IDV, R, NCL, Panoply
 - Analysis packages: AMET, I/O API Tools, Metstat

Model Performance Evaluation

- MPE = Model Performance Evaluation
- Question why a model is doing what it is doing
- What are the inherent uncertainties and how do they impact the model results?
- Evaluation Techniques
 - Comparisons against observations/measurements
 - Sanity checks
 - Looking for known trends (diurnal/seasonal patterns, chemical signatures, source signatures)
- Comparisons to measurements
 - Pair in space and time
 - Compare predicted vs observed maximums (means)
 - Paired in space but not time
 - Statistical metrics

Model Performance

When has a model demonstrated acceptable performance

- Not a simple question
 - A pollutant may consist of many components (e.g., PM consists of sulfate, nitrate, ammonium, organic carbon, elemental carbon, soils, coarse mass, etc.)
 - The PGM may simulate some components well, others poorly
 - o Right answer for the wrong reasons?
- What model performance metrics should be used to facilitate inter-comparisons between applications and models?
- What metrics should regulators use for assessing attainment?

Model Performance

Model performance goals

- What level of accuracy is considered to be close to the best a model can be expected to achieve?
 - Regulatory vs. scientific applications
- Different performance goal and criteria developed for:
 - Different components of each pollutant
 - Different seasons of the year
 - Different parts of the country
 - Urban vs. rural sites
 - Complex vs. simple terrain
 - Clean vs. polluted days

Model Performance

Performance Goals and Criteria

- Not a pass/fail metric, used to help interpret model skill
- Based on literature reviews and past experience

Fractional Bias	Fractional Error	Comment
≤±15%	≤35%	O ₃ model performance goal that would be considered very good model performance for PM species
≤±30%	≤50%	PM model performance Goal, considered good PM performance
≤±15%	≤35%	PM model performance Criteria, considered average PM performance. Exceeding this level of performance for PM species with significant mass may be cause for concern.

MPE Challenges

- Modeling scales are growing both spatially and temporally
 - Datasets becoming larger: more difficult to manage/move around
 - Need to process and digest voluminous amount of information
- Heterogeneous nature of observational datasets
 - Vary by network, by quality, by format, by frequency
- Measurement or model artifacts
 - What is modeled is not always measured
 - Need adjustments before comparisons
- Problem of incommensurability
 - Comparing point measurement with volume average

Operational Evaluation

- Mostly quantitative
- Compute suite of statistical measures of performance
 - Peak Prediction Accuracy, bias metrics (MB, MNB, NMB, FB), error metrics (RMSE, FE, GE, MGE, NMGE), etc.
 - "Goodness-of-fit" measures (based on correlation coefficients and their variations)
 - Various temporal scales
- Time-series analyses
 - Hourly, weekly, monthly
- Grid (tile) plots
- Scatter plots
- Soccer Plots

Spatial Plots

Statistical spatial plots: MPE stats at monitors

O3 NMB (%) for run CMAQ_LMOS_2017 for 20170523 - 20170623 units = % coverage limit = 75% > 50 45 40 35 30 25 20 20 115 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 <-50

May 23 – June 23, 2017 O3 Normalized Mean Bias

<u>Tileplots</u>: gridded model output concentrations

July 2011 Monthly Max O₃

Timeseries Analysis

O3 Site Timeseries for CMAQ_LMOS_2017: May-Jun 2017

May – June 2017 Daily Max O₃ at Kohler Andrae, WI

Date

CAMx Bias in Daily Max O₃

Scatter Plots

2001 Monthly Mean PM_{2.5} at STN and IMPROVE monitors in the East and West U.S.

Quadrant (Skill) Plot of 2011 Summer Season MDA8 O₃ @ New Mexico AQS Sites

Soccer Plots

- Error vs Bias Plot
- Dashed lines indicate model performance goals and criteria
 - The closer to the origin, the better the model performance

2008 Monthly Average PM2.5 at IMPROVE sites in Colorado

PM Speciation Stacked Bars

- Period averaged PM species at a site (or multiple sites) in a network
- Compares observations and model

January 2011 Monthly Average PM_{2.5} species at all CSN sites in the Intermountain West modeling domain

Diagnostic Evaluation

- Qualitative and Quantitative
- Compute pollutant ratios
 - Metrics different for each problem being diagnosed / studied
 - O₃/NO_z, H₂O₂/HNO₃ for NO_x versus VOC limitation
 - NO_z/NO_v for chemical aging
 - PM species ratios such as NH_3/NH_x , $NO_3/(total nitrate)$ for gasparticle partitioning, NH_4/SO_4 , NH_4/NO_3 , etc.

Innovative Techniques

- Principal Component Analyses
- Process Analyses
- Tagged species tracking
 - Source Apportionment: CAMx OSAT & PSAT

Sensitivity Analysis

- How does the model respond to a change in an independent parameter?
- In air quality modeling sensitivity analysis is used to:
 - Quantify the atmospheric response to an emissions control
 - Determine the uncertainty in the response
 - Perform inverse modeling and data assimilation

Methods

- Brute Force Method (BFM)
- Decoupled Direct Method (DDM)
- Green's Function Method
- Automatic Differentiation in Fortran (ADIFOR)
- Adjoint (inverse model) Method

Brute Force Method (BFM)

- Vary the input parameters one-by-one in separate model simulations and evaluate the change in the predicted concentrations
- Pros
 - Easy to apply
 - One additional run for each sensitivity parameter
 - Straightforward to interpret the results
- Cons
 - Noisy for small perturbations
 - Unrealistic for large perturbations computationally expensive

Decoupled Direct Method (DDM)

- Sensitivity equations are derived by taking the derivative of the CTM model concentration equations relative to a given sensitivity parameter
- These equations are integrated decoupled from concentrations using the same numerical operators as the CTM - easy to implement
- Pros
 - Computational and space efficiency
 - Accurate, avoids numerical error for small perturbations (local slope)
 - Can examine non-linearity with HDDM

Cons

- Complex to implement in a model
 - Aqueous & aerosol chemistry especially difficult
 - Must update each time PGM model changes
- Inaccurate for large perturbations
 - This can be addressed by using high-order coefficients

Brute Force vs DDM

Ozone Source Apportionment

- <u>Tagged Species</u>: Chemically active tracers follow ozone precursors through the chemistry mechanism
 - Tracers are spectators to the model chemistry and track the chemical conditions (NOx or VOC limited) under which O₃ is formed

```
Simplified Ozone Chemistry Mechanism
VOC \cdot + NO \rightarrow NO_2 + VOC \cdot \cdot \cdot
NO + O_3 \rightarrow NO_2 + O_2
NO_2 + hv \rightarrow NO + O
O + O_2 + M \rightarrow O_3 + M
```

- CAMx Ozone Source Apportionment Tool (OSAT)
 - Attributes O₃ formation to biogenic or anthropogenic VOC without distinguishing the "controllable" nature of the emissions
- CAMx Anthropogenic Culpability Assessment (APCA)
 - Considers "controllable" emissions by attributing O₃ formation to anthropogenic precursors
 - Example: in VOC-limited conditions where biogenic VOC and anthropogenic NOx react to form O_3 , OSAT would attribute the O_3 to biogenic sources; APCA attributes the O_3 to the anthropogenic NOx

Source Apportionment APCA Example

Limitations of PGMs

- Quantifying uncertainty is difficult because of the modularity of the PGM platforms
 - How do you estimate uncertainty in met and then propagate to the PGM?
- Abstraction/Distortion/Deletion
 - Parameterization is needed to balance accuracy with computing economy
- Algorithms and evaluation focus on conditions around the mean
 - Air quality planning is concerned with outliers/peaks
- Model algorithms are limited at fine spatial and temporal scales
 - WRF is a mesoscale model, PGM's are regional models; localized pollution issues challenge the capabilities of the PGM system
- Lag between research and implementation of science
- We don't know what we don't know
 - Organic aerosol, gas-phase aromatic, heterogeneous chemistry are evolving

Future Directions

- Alternative model grid structures
- Adaptive grids and time scales
- Probabilistic applications

- One-Atmosphere+: Expand the representation/integration of all atmospheric processes
- Meteorology ← → Chemistry: expand two-way coupled modeling to planning
- Earth-System Modeling: Expand the two-way coupled meteorologychemistry model to all media (soil, water)
- Data assimilation: Improve PGM skill with nudging to different data platforms (in-situ, remote sensing, sensors)
- Artificial Intelligence: User AI and neural networks to optimize model solutions to novel problems

Final Note

- PGMs are the best platform that we have for integrating all of our knowledge about air pollution
 - They do amazingly well given that they parameterize a system with a lot of chaos and uncertainty
- PGMs are decision support tools
 - Understand their strengths and limitations
 - They aren't designed to provide THE answer, just an answer, or a set of answers
- To Learn More
 - EPA Modeling Guidance for Demonstrating Air Quality Goals (Nov 2018)
 - CAMx and CMAQ User's Guides
 - LADCO modeling protocols and MPE reports
 - Dive In! Download model code and compile, run a test case