Improving Ozone Simulations in the Great Lakes Region: the Role of Emissions, Chemistry, and Dry Deposition

Momei Qin, Haofei Yu, Yongtao Hu, Armistead Russell, Talat Odman Kevin Doty,
Arastoo Pour-Biazar,
Richard McNider

Eladio Knipping

March 20, 2019

LADCO "EPRI Great Lakes Ozone Study" webinar

Outline

- Background
- WRF simulations
 - Baseline evaluation
- CMAQ simulations
 - Baseline evaluation
 - Ground observations (O₃ & NO_x)
 - Emissions
 - 50% NO_x from mobile sources
 - MEGAN vs. BEIS (cb05)
 - MEGAN vs. BEIS (cb6)

- CMAQ simulations (continued)
 - Chemistry
 - CB6 vs. CB05
 - Deposition
 - 10-fold dry deposition of O₃ over fresh water
 - Final simulation
 - Lateral boundary conditions
- Conclusions

Background

- O₃ exceedance is still of concern in the Great Lakes Region
- Air quality model tends to overestimate O₃ over cooler bodies of water, e.g. over Lake Michigan

WRF configurations

- WRFv3.8.1
- Jun 15th to Aug 1st, 2011
- One-way nested
 - 12-km (402×252)
 - 4-km (390×279)
- NAM-12 & NLCD 2011

	12-km	4-km
Longwave radiation	rrtmg scheme	
Shortwave radiation	rrtmg	scheme
Land surface	Pleim	-Xiu LSM
Cumulus	Kain-Fritsch scheme	
microphysics	Morrison (2 moments)	
PBL	ACM2 (Pleim) PBL	
Surface nudging	off	
Grid nudging	above the PBL	off
Soil nudging	on	on

WRF baseline evaluation

- Surface temperature, humidity
- Wind speed (m/s)

Distance from the shoreline	Type
>100km	Inland
20-100km	Buffer
<20km	Coastal

High biases occurred during the nighttime and in the early morning (19:00-8:00 CST), when wind speed is low

CMAQ configurations (baseline)

- CMAQv5.1
- Jun 21st to Aug 1st, 2011
- Grids
 - 12-km, 12US2 (396×246)
 - 4-km, 04GL (384×273)
 - 35 vertical layers

- Mechanism
 - Cb05e51, with 6th aerosol module
- Emissions
 - 2011 NEI (Version 6.2 Platform)
 - In-line calculation in CMAQ
 - Point sources & Biogenic emissions (BEIS3)
- Other options

Use inline windblown dust emissions	N
Turn on lightning NO _x	N
Use min Kz in edyintb	Υ
Calculate in-line deposition velocities	Υ
Ammonia bi-directional flux for in-line deposition velocity	N
Mercury bi-directional flux for in-line deposition velocity	N
Surface HONO interaction	Y

CMAQ performance (baseline)

• MDA8 O₃

MDA8 O3 (base)

CMAQ performance (baseline)

• O₃

July Monthly Means

Gro	up	<20km	20 – 100km	>100k m
MDA8 O ₃	Obs	51.2	50.9	54.1
	12-km	60.3	55.0	58.6
	4-km	56.6	52.5	56.4
MDA8 O ₃ (>60ppb)	Obs	69.1	67.8	68.1
	12-km	71.4	65.1	68.3
	4-km	67.4	61.5	64.7

Number of sites given in parentheses

CMAQ performance (baseline)

• NO_x

Gr	oup	<20km	20 – 100km	>100km
	Obs	15.3	4.4	9.0
NO_x	12-km	20.0	3.1	9.3
	4-km	17.5	4.5	10.7

Number of sites given in parentheses

50% NO_x emissions from mobile sources: O₃ performance

Gro	up	<20km	20 – 100km	>100km
	Obs	51.2	50.9	54.1
MDA8 O ₃	Base	56.6	52.5	56.4
	0.5NO _x	55.2	50.6	54.3
MDA8 O ₃ (>60ppb)	Obs	69.1	67.8	68.1
	Base	67.4	61.5	64.7
	0.5NO _x	65.1	58.7	61.8

50% NO_x emissions from mobile sources: NO_x performance

Gı	roup	<20km	20 – 100km	>100k m
	Obs	15.3	4.4	9.0
NO _x	Base	17.5	4.5	10.7
	0.5NO _x	13.8	3.1	8.2

50% NO_x emissions from mobile sources: NO_x performance

With 50% reduction of NO_x emissions from mobile sources

- Better agreement of NO₂, NO_x and NO_y
 with the observations around
 sunrise/sunset
- Daytime NO₂ and NO_x tended to be underestimated at urban and suburban sites
- Overestimation of NO_v remained

MEGAN vs. BEIS (cb05)

- MEGAN yielded higher emissions of isoprene and monoterpene
- Positive biases of MDA8 O₃ along the Lake Michigan shore and in the urban areas in Pennsylvania, Ohio and Indiana were larger

MEGAN vs. BEIS (cb6)

Group		<20k m	20 – 100km	>100km
	Obs	51.2	50.9	54.1
MDA8	Base	56.6	52.5	56.4
O ₃	CB6	55.4	51.9	55.5
	CB6_megan	56.9	52.6	56.5
MDAO	Obs	69.1	67.8	68.1
MDA8 O ₃ (>60ppb)	Base	67.4	61.5	64.7
	CB6	64.9	60.0	63.3
	CB6_megan	67.1	61.1	64.8

✓ Base: cb05 + BEIS

CB6: cb6 + BEIS

CB6 vs. CB05 (both with BEIS)

Gro	up	<20km	20 – 100km	>100k m
	Obs	51.2	50.9	54.1
MDA8 O ₃	Base	56.6	52.5	56.4
	CB6	55.4	51.9	55.5
MDAGO	Obs	69.1	67.8	68.1
MDA8 O ₃ (>60ppb)	Base	67.4	61.5	64.7
	CB6	64.9	60.0	63.3
NO _x	Obs	15.3	4.4	9.0
	Base	17.5	4.5	10.7
	CB6	17.6	4.5	10.8

Dry deposition

• Increase dry deposition of O₃ over fresh water by a factor of ten

- Reductions of MDA8 O_3 in the range 0.5-2.5 ppb over the lakes
- Negligible influence on surface O₃ over coastal areas

Final simulation (12 km & 4 km)

Meteorology

Nudging above 2 km instead of above the PBL

Emissions

- Biogenic emissions from MEGAN
- 30% reduction of NO_x emissions from mobile sources
- Updated emissions from sectors including afdust, othafdust, onroad using new meteorology

Mechanism

• Cb6 instead of cb05

Final simulation: O₃ performance

Final simulation: O₃ performance

Final simulation: O₃ performance

Group		<20k m	20 – 100km	>100km
	Obs	51.2	50.9	54.1
MDA8 O ₃	Base_new	57.5	52.7	56.5
	Cb6_megan	56.9	52.6	56.5
	Final	55.7	50.9	54.1
MDAG	Obs	69.1	67.8	68.1
MDA8 O ₃ (>60ppb)	Base_new	68.8	61.9	64.9
	Cb6_megan	67.1	61.1	64.8
	Final	65.7	58.6	62.0

[√] Cb06_megan vs. base_new (cb05 + BEIS)

[✓] Final (30% NOx reduction + nudging above 2km) vs. Cb06_megan

Final simulation: NO_x performance

′	
-80 -75	MB (ppb) 47.5 -201(-102 pplied 42.5 1 - 5 5 - 10 40.0 37.5 Longitute

— Obs · · · · Sii	n_base_new -	Sim_final

	Group	<20km	20 – 100km	>100km
NO _x	Obs	15.3	4.4	9.0
	Base_new	17.3	4.5	10.7
	$0.5NO_x$	13.8	3.1	8.2
	Final	14.3	3.4	9.1

GEOS-Chem vs. Default Boundary Conditions

 Lateral boundary conditions do not affect surface O₃ in the Midwest in July 2011.

Conclusions

Baseline

- Higher MDA8 O₃ simulation against observation
 - ~10% in the coastal areas and 5% in the inland areas
 - After midnight and in the afternoon
- Elevated MDA8 O₃ (larger than 60ppb) was biased low
- NO_x was biased high by 15-20%, especially around sunrise/sunset

Sensitivity tests

- Reduction of NO_x emissions from mobile sources or using CB6 instead of CB05
 - Lower MDA8 O₃ compared to the baseline
 - High biases near the lake significantly decreased
 - Negative biases of MDA8 O₃ > 60ppb became larger
- Using MEGAN instead of BEIS or increasing O₃ dry deposition over fresh water did not improve O₃ simulation

Conclusions

Final Simulation

- 30% of mobile NO_x; MEGAN; cb6; nudging above ~2km
 - Well captured MDA8 O₃ over the domain except coastal area, leading to better agreement with the observations compared to the baseline
 - Lower biases for elevated O₃ (worse than the baseline)
 - Closer to the observations for NO_x

odman@gatech.edu