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Model images of ozone have long shown high values over the Great Lakes
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High ozone appears connected to over water grid boxes.
How much of this amplification is real or is it partly a
model artifact?




For 2009 ozone season NOAA Operational CMAQ consistently
over predicted surface ozone compared to ferry data.
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Figure 9. Graph of all CMAQ model forecast ozone mixing ratios
in red with Lake Express Ferry observations 1n black from 2009.

From Cleary et al. 2015
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Figure 11. Median O3 from (a) 1 to 24 h CMAQ forecasts. (b) 25
to 48 CMAQ forecasts and (¢) ferry observations.

From Cleary et al. 2015




Note that the CMAQ performance discussed above from
Cleary et al. 2015 is from the operational CMAQ. The
operational CMAQ is forced not by WRF but by NCEP’s
12 km North American Model (NAM).



Excessive Vertical Mixing in Operational Forecast Models

e Operational forecast models (e.g UK Met office and
ECMWEF -Louis, 1979; Beljaars, 1995; Bechtold et al., 2008))
and climate models have generally had to add mixing to
enhance performance evaluations in most settings.

 However, over oceans (Brown et al., 2005) and smooth
areas such as the Antarctic interior (King and Connolley,
1997) this added mixing produces problems (Brown et al.,
2005). Here reduced mixing formulations such as “short-
tailed” forms appear to work better.

 The stable boundary over the Great Lakes may be a place
where models have added too much mixing.

For an excellent review — see Savijarvi, H., 2009. Stable boundary layer:
Parametrizations for local and larger scales. Quarterly Journal of the Royal
Meteorological Society, 135(641), pp.914-921.



Models have uncertain performance in nighttime stable boundary layer
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GABLS Model Inter-comparison Study (Bosveld et al. 2014)



CMAQ Over-prediction of Surface Ozone

Hypothesis: There may be due to too much
mixing in the stable boundary layer in the
operational NAM. This mixing is bringing down
ozone from aloft causing surface values to be

too high.



Schematic of Ozone Formation in
Lake Michigan in the 1990’s @
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High ozone can be produced in residual layer aloft as a near perfect
smog chamber (Dye et al. 1995).

However, if the model has too much mixing then too much ozone
from the residual layer may be mixing to surface causing over
prediction of surface ozone



Actual operational
CMAQ cross-sections

Over southern
Lake Michigan

highest ozone was

At ferry transact

aloft over western over eastern lake
shore but not highest ozone was
over most of lake not aloft

Ferry Transect
Michigan
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However, in examining VOC/NOKX ratios it was found that higher
ozone production potential might be aloft over most of lake.



Typical Boundary Layer Stable Parameterization

K, = f(RD) |2

where | is mixing length
and s is shear .
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CMAQ Chemistry Runs to Examine Impact of Mixing

The mixing sensitivity runs discussed above shows that the
operational NAM/CMAAQ likely had much larger mixing than the
Pleim-ACM2 scheme.

In order to test whether too much mixing may have been
responsible for the ozone over-prediction over water two
WRF/CMAQ chemistry runs were carried out.

The CMAQ runs were made for August 2011 by Georgia Tech.

1. WRF was run with the standard Pleim ACMZ2. This WRF run
was then used to drive CMAQ.

2. WRF was run with the long-tailed Louis scheme (greater
mixing). This WRF was used to drive CMAQ.
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The CMAQ runs showed that indeed the model run driven
by the Louis (larger mixing) WRF increased ozone over Lake
Michigan
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The pattern of increased ozone was consistent
with the over-prediction seen in the operational
CMAQ runs reported by Cleary et al. 2015.

At this point we might have
concluded that our original
hypothesis — that too much mixing
in the meteorological was
responsible for the operational
CMAQ over-prediction was valid.



However, an examination of time series plots from
the two CMAQ runs gave us pause.

Observed Control (ACM?2) =eseeeeeeee: Louis = = =—-

The Louis formulation which

should have mixed more ozone
to the surface at night actually
showed lower ozone. This was
then a hint that the Louis form
was actually producing less
mixing in CMAQ than the Pleim-
ACM2 formulation.
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The solid lines are for the
Pleim ACM2 case (small
mixing) and dashed dotted
lines for the Louis case (large
mixing).

Blue is for 12 UTC and red for
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Plots show that the K,
diagnosed in CMAQ are

smaller for the Louis form
than from the Pleim ACMZ2.



So why are K’s in CMAQ smaller for Louis than Pleim ACM2?

K, = f(RD) |_2s 1
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The answer is that CMAQ does not use the Ks
from WRF or NAM. It rediagnoses Ks from wind
and temperature profiles. In WRF the Louis Ks
are so large they mix out the shear. When this
shear is used in the CMAQ diagnosed Ks it
produces a smaller K than in WRF.
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Summary and Conclusions

Based on this analysis it is concluded that excessive mixing in the stable
boundary layer in the operational NCEP NAM actually produces less mixing
in CMAQ.

The analysis also brings up questions about using CMAQ in an offline form.
The wind and temperature profiles passed to WRF represent the result of
mixing . Using these to diagnose Ks in CMAQ may lead to error.

Using the same mixing formulation in WRF and in CMAQ may minimize this
error.

For example the Pleim —ACM2 should be used in WRF since it is currently
the form used in CMAQ . However, the shear in WRF reflects the mixing
that has already occurred. Thus, the Ks in CMAQ using Pleim ACM2 may be
smaller than Pleim ACM2 Ks in WRF.

The Pleim ACM2 may have more mixing than Mellor-Yamada- Janjic or
England-McNider.



Part Il: Vertical Nudging Strategies

A common nudging strategy in the air quality community has
been to nudge only above the boundary layer.

However, the nocturnal boundary is quite shallow. In the
residual layer between the old daytime boundary and the

nocturnal boundary layer important physical phenomena such
as the low level jet can be manifested.

The impact of nudging in the residual layer was examined.



As discussed first by Schafran 2000 in a Great Lakes

study, standard rawinsonde data in the Midwestern
U.S. at OOUTC (~6PM LST) and 12 UTC (*6AM LST)

does not capture the nocturnal low level jet.

Thus, there should be caution in using large scale
analyses based on rawinsonde data to nudge the model
in FDDA assimilation

Schafran 2000 did not provide any specific examples.
Here we provide example impact of nudging on wind
profiles and impact on air quality.



Illustration of Blackadar Low Level Jet
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NPN Profilers
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Locations of NOAA National Profiler Network (NPN) profiler sites.
Model comparative statistics were based on all sites. Red circled
stations show locations where specific low level jets were compared
to model nudging strategies.
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lllinois). Left is at 0300 UTC (2100 LST) 17 June 2011 and right at 0600 UTC
(0000 LST) 4 July 2011. Black solid line is for nudging above PBL. Black
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observation.
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While nudging only above 2km did allow low level jet to developed it slightly
deteriorated surface wind performance




Nudging above 2km did improve ozone
bias especially around Lake Michigan
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